
¥

E

NASA Contractor Report 191509

/_ -_>/

/ 9oi_

7<TP

A Formal Language
for the Specification and Verification
of Synchronous and Asynchronous Circuits

David M. Russinoff

\
\

\

\

\

COMPUTATIONAL LOGIC, INC.
Austin, Texas

Contract NAS1-18878

September 1993

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

I -- 0
_t U O"
o_ t- ,-_
Z :3) o

uJ

0
Q O.

Z Z ¢
<¢ ,dE
,,J

(/1 P- O.
_j _rO
<[nO C:O _

0

C) _,J P" U

C) LL C_ U P-

,--_U ZV_ C:

I v) k- Z +_
0_ <OR

I -r_

ZOu_

_D

. \

L

\

NASA Contractor Report 191509

A Formal Language

for the Specification and Verification

of Synchronous and Asynchronous Circuits

David M. Russinof[

Computational Logic, Inc.

171 7 West Sixth Street, Suite 290

Austin, Texas 78703

Contract NAS1-18878 September 1993

w

\
\

\
\

\

\
\
\

1 Introduction

Our past work in the formalization and verification of fault-tolerant systems

has consisted of three tasks:

1. The formal design and verification of a circuit that achieves Byzantine

agreement among four synchronous processors [1];

2. The mechanical verification of the Interactive Convergence dock syn-

chronization algorithm [9];

3. The formalization of the Biphase Mark protocol for asynchronous com-

munication [71.

The purpose of the present task, Task 4, is to investigate the integration of

these previous efforts in the design of an asynchronous Byzantine-resilient

computing system. The ultimate goal is a formally verified gate-level imple-

mentation.

The design of a hardware circuit that achieves asynchronous communica-

tion is necessarily contingent on an underlying model of hardware behavior.

Any attempt to devise such a circuit in the abstract, without first establish-

ing a suitable model, would be a largely wasted effort. Thus, a prerequisite
for the realization of our goal is the selection of a formal hardware description

language (HDL), along with an underlying behavioral model.

Our previous research in hardware modeling and verification has been
based on an HDL developed at CLI by Brock and Hunt [5}. The utility of the

Brock-Hunt HDL as a verification tool, as demonstrated in the verification

of the FMg001 microprocessor [4], stems from the simplicity of its semantics.

All circuits designed in this language are assumed to be driven by an implicit

global clock, Simulation of a circuit gm0unts to a computation of a sequence
of states corresponding to clock cycies. Thus, no explicit representation of

time or propagation delays is provided, so that the class of circuits that can
be satisfactorily modeled is limited. In particular, the language is unsuitable

for any application involving asynchrony.
Commercial event-driven simulation languages provide for a broader range

of hardware behaviors. VHDL [7] in particular has gained wide acceptance

in the hardware design community as a validation tool. Since the limitations

of simulation as a method of validation are well known, a formal verification

system based on VHDL would have clearpracticalvalue. Unfortunately,like

most programming languages in common use, VHDL was not intended as

an object of reason. Inevitably,itssemantics are complicated and obscure.

Various attempts to formalizeVHDL [2,6]have encountered severedifficulty

and show limitedpromise of short-term success.

We have undertaken, therefore,to develop a new formal HDL with the

intended applicationof verifiableasynchronous communication. This paper

is a report on the progress of thisendeavor. Our primary objectiveis to

formalize the event-based behavioral model of VHDL while retaining the

semantic clarityof the Brock-Hunt HDL. Thus, we would liketo inheritthe

proof methodology developed by Brock and Hunt, including

• abstract descriptionsof (acyclic)combinational circuitsin terms of

Boolean functions;

• abstract state machine descriptionsof sequentialdevices;

• hierarchicaldesign and verificationof complex circuits.

At the same time, our language should provide for

• faithfulimplementation of the VHDL notions of time and propagation

delay;

• gate-levelconstructionof sequentialdevicesby means offeedback loops,

e.g.,flip-flopsimplemented by cross-coupledhand gates;

• modeling of asynchronous communication.

Following [5], we have developed our language within the logical frame-

work of the Nqthm system of Boyer and Moore [3]. Its simulator (operational)

semantics are expressed by a recursive function Sill, defined in the Nqthm

logic. The two principal arguments of this function are a hardware module

to be simulated and a list of wave forms corresponding to the module's input

signals, representing the values of those signals as functions of time. The

value returned by Sill is a list of waveforms corresponding to the module's

output signals, produced by propagating the input values according to the

structure of the module.

In Section 2, we describe our formal notion of time, the structure of

waveforms, and the propagation of signal values. In addition to the two

--'m

2

w

! conventional VHDL delay modes, _ransport and inertial, we define a nonde-

termmiagi¢ mode, which subsumes the other two and provides a scheme for

concise behavioral descriptions of combinational circuits. We also introduce

the notion of an indefinite or partially specified waveform, which is critical

to the subsequent development as it provides for the simulation of abstract

modules with partially defined behaviors.

In Section 3, we discuss our representation of hardware modules as Nqthm

constants. The behaviors of combinational, sequential, and structural circuits

are defined by means of a STEP function, for which we provide an axiomatic

characterization. The top-level simulator function SI8 is defined recursively

in terms of STEP, as described in Section 4. The simulator is complicated

considerably by the possible presence of elelga delays, which represent zero-

delay devices as prescribed in the VHDL standard [7]. In conformance with

commercial VHDL simulators, in order to guarantee that simulation termi-

nates, an extra argument is passed to SIM, representing a uniform bound on

the lengths of all zero-delay paths within a circuit. Related constraints are

also imposed on the input waveforms to a module.

Our approach to circuit verification is based on formal notions of module

specification and implementation, as presented in Section 5. Here, we also

describe procedures that automatically derive abstract combinational and se-

quential behavioral modules that serve as specifications for circuits of certain

types. Once a behavioral module has been proved to be a specification of

a circuit, it may be substituted for any instances of the circuit that occur

an components of any larger circuit without affecting its functionality. This

principle is the key to hierarchical circuit analysis.

Included in the text are informal statements of some general theorems

that are relevant to the verification of circuits defined in our system. The

proofs of most of these theorems remain to be checked mechanically, and

this work will be a significant portion of the Task 5 effort. The function

definitions that compose the simulator, on the other hand, have all been

formally accepted by the Nqthm prover, and appear in complete form in an

appendix.

\

2 Signals

2.1 Time

We define a time to be an ordered pair of natural numbers, as recognized by

the predicate TIMEP (see the appendix for the definition of this and all other

functions referenced herein). The set of all such pairs is ordered lexicograph-

ically. Thus, the time origin, the least element of this set, is the pair ' (0 .

0).

The first component of a time represents the number of time units, which

we arbitrarily take to be picoseconds, that have elapsed since the start of

a simulation. The second component, which we call the delta component,

is required in order to allow zero-delay events. It represents the number of

successive zero-delay events that have been scheduled during the current time

unit.

The time for which an event is scheduled is computed from the current

time tO and a given propagation delay by the function TPLUS. If the delay is

O, then the value returned is the result of incrementing the second component

of tO by 1; otherwise the delay is added to the first component of tO and the

second component is set to O.

w

2.2 Wave forms

A toaveform is a function that assigns a value to every time. In our formal-

ization, we represent a waveform as an association list. Each pair in this list

consists of a value and a time at which that value was or is to be assumed

by the signal with which the waveform is associated. These pairs, which are

called events, are listed in decreasing order with respect to time. The time

of the earliest event in any waveform is ' (0 0).

There is no restriction on the values that may be assumed by a signal. We

adopt the convention of using the the symbols ' T and ' F to represent high

and low signal values, respectively. The value ' X is special--it represents an

unknown value. Any value other than ' X is said to be definite. A definite

waveform is one that _aever assumes the value 'X.. A value vl generalizes a

value v2 if either vl = v2 or vl = 'X. A waveform ul generalizes a waveform

w2 if for every time t, the value of ul at t generalizes the value of u2 at t. Note

that the set of all waveforms is a lower semi-lattice under this relation. This

.... a.

,i

r

i means that any two waveforms have a greatest lower bound, i.e., a common

generalization that is generalized by any other common generalization. The

set also has a least element with respect to this ordering, which we call the

null waveform, namely the waveform ' ((X . (0 0))), which assigns the

value 'X to every time.

A list of waveforms is called a packet. The lattice structure is extended

in the obvious manner to the set of all packets of any fixed length. Thus,

one packet is said to generalize another if the relation holds between corre-

sponding waveforms.

2.3 Propagation

The functionsPOST-INERTIAL-EVENT-DEFINITE and POST-TRANSPORT-EVENT-

DEFINITE implement inertial and transport delay, as defined in the VHDL

standard[5]. Each of these functions takes as arguments a waveform w, a

value v, and a time t 1 at which v is to be scheduled on w. POST-INERTIAL-

EVENT-DEFINITE takes as an additional argument the current time tO, which

must precede tl. (The effect of scheduling an event with transport delay is

independent of the current time.) The value returned by either function is

the appropriately modified waveform.

However, the correctness of these functions depends on the assumption

that both v and w are definite. If we allow either argument to be indefinite,

then the more general functions POST-INERTIAL-EVENT and POST-TRANSPORT-

EVENT must be used. While the recursive definitions of these functions are

quite complicated, they may be described informally but precisely as follows:

For any waveform w, any v,and any times tO < tl < t2, the value

of (POST-INERTIAL-EVENT w v 'cO tl t2) is the greatest lower

bound of the set of allwaveforms of the form (POST-INERTIAL-

EVENT-DEFINITE w' v' tO t'), where w' isgenera]izedby w,v'

is generalizedby v, and tl < t_< "el.

For any waveform w, any v, and any times to < tl <_ t2, the value

of (POST-TRANSPORT'EVENT w v tO t l t2) is the greatest lower

bound of the set of all waveforms of the form (POST-TRANSPORT-

EVENT-DEFINITE w' v' t'), where w' is generalized by w, v.' is

generalized by v, and t 1 _< t I <_ t 1.

These are the two functions that are actually called by our simulator

to schedule events for signalswith inertialand transport delay,respectively.

Note that in addition to accepting an indefinitevalue and an indefiniteinitial

waveform, they alsoaccept a range ofpossibletimes instead ofa definitetime

for the scheduling of the event. In order to schedule an event for a definite

time t, the appropriate function iscalledwith t2 - tl = t.

We alsointroduce a thirdmode of propagation delay,callednondetermi_

isticdelay,which isimplemented by the function POST-NONDETERMINI_'rIC-

EVENT. The behavior of thisfunction may be described as_ollows:

Given any waveform w, any v, and any times tO < tl < z2, let

trainbe the minimum oftI and the times ofany eventsscheduled

on w aftertO. (POST-NONDETERMINISTIC-EVENT w v tO tl Z2)

is the waveform whose value at any time t is

(a) the value of w at t, if t < tm:i.n;

(b) 'X, if train < t < t2;

(c) v, if t2 <_ t.

This delay mode is not actually exhibited by any primitive devices, but

turns out to be useful in the behavioral specification of complex circuits.

Its utility, as we shall see in Section 5, stems from the observation that it

subsumes both inertial and transport modes in the sense that the wave-

form (POST-NONDETERMINISTIC-EVENT w v tO tl t2)is a generalizationof

both (P0ST-INERTIAL-EVENT w v t0 tl t2) and (POST-TRANSPORT-EVENT

w v tO tl t2).

3 Modules

Our simulator accepts three types of modules: combinational, sequential, and

structural. A combinational or sequential module is also called behavioral A

structural module represents a circuit constructed from behavioral modules.

Associated with a module of any type are a fixed number of inputs and a

fixed number of outputs.

We define an input packet (resp., output packet) for a given module to be

a list of waveforms whose length is the number of its inputs (resp., outputs).

_w

i

]

The behavior of a behavioral module is characterized by a function STEP of

four arguments: (1) a module rood, (2) an input packet inp, whose length

is the number of inputs of rood, (3) an output packet outp, whose length

is the number of outputs of rood, and (4) a time t. The value returned by

STEP is the result of updating outp by executing any events in inp that are

scheduled for time t. This function is defined so as to exhibit the following

critical properties:

0 Monotonic: if inpl and outpl generalize inp2 and outp2, respec-

tively, then (STEP mod inpl outpl t) generalizes (STEP rood inp2

outp2 t).

° Nonpredictive: If inpl and inp2 have the same values at all times

that are not later than t, then (STEP rood inpl outp t) = (STEP

rood inp2 outp t). Thus, the past and projected future behavior of a

module is independent of its future input.

. Nonretroactive: The values of the updated packet (STEP rood inp

outp t) at any time no later than t are the same as those of outp.

Thus, the past behavior of a module is immutable.

3.1 Combinational Modules

The simplest modules are combinational. They consist of four components:

(1) a list of symbols representing input signals; (2) a list of output forms,

which express the values of the output signals in terms of the values of the

input signals; (3) a delay mode corresponding to each output signal; and

(4) a delay range, represented as a pair of numbers, corresponding to each

output signal. A combinational module is primitive if all of its delay modes

are inertial or transport and all of its delay ranges are intervals of length

0. As an example of a primitive module, we define a nand gate as follows:

(DEFN NAND ()

'(COMBINATIONAL

(A B)

((M-NAND A B))

(INERTIAL)

((2000 2000))))

;type

;inputs

;outputs

;modes

;delays

This module has two inputs and a single output with a fixed inertial delay

of 2000 picoseconds. (Note that a fixed delay is represented as a degenerate

range.)

Output forms must be defined in terms of monotonic functions, in order

to conform to the monotonicity requirement for our STEP function. Thus,

the function M-SAND, which is used to compute the output of our hand gate,

is defined by

(DEFN M-NAND (A B)

(IF (EQUAL A 'F) 'T

(IF (EQUAL 8 'F) 'T

(IF (AND (EQUAL A 'T) (EQUAL B 'T)) 'F

,x))))

Monotonic versions of other Boolean functions (M-NOT, M-OR, etc.) are defined

similarly.

Execution of (STEP rood inp outp t) for a combinational module ,sod

amounts to updating each waveform in the packet outp by means of a call to

the appropriate event-posting function, using the value computed from the

corresponding output form and the current input values at time 1:. Thus, for

combinational modules, the nonpredictive property of STEP may be strength-

ened as follows: If inpl and inp2 have the same values at time t, then (STEP

mod inpl outp t) - (STEP mod inp2 outp t).

3.2 Sequential Modules

A sequential module consists of ten components: (1) a list of input signals;

(2) a list of output forms; (3) a list of delay modes; (4) a list of delay ranges;

(5) a t_gger, which may be either POSITIVE-EDGE or NEGATIVE-EDGE; (6) a

llst of symbols, called s_ate _,ariables; (7) a list of forms for computing values

of state variables in terms of their previous values and the values of the

inputs; (8) a minimum admissible clock period; (9) a list of setup times,

corresponding to the inputs; and (10) a list of hold times, corresponding to

the inputs. The first four of these components have the same form as the

components of a combinational module, except that the variables occurring

in the output forms are state variables rather than input signals. Also, a

sequential module is required to have at least one input, the first of which is

always interpreted as the clock input.

@

A simple example of a positive-edge-triggered sequential module is the

following:

(DEFN D-FLIP-FLOP ()

,(SEQUENTIAL ;type

(CLK D) ;inputs

(Q (M-NOT O)) ;outputs

(INERTIAL INERTIAL) ;modes

((4000 6000) ;delays

(4000 6000))

POSITIVE-EDGE ;trigger

(O) ;state variable

(D) ;state form

12000 ;period

(6000 4000) ;setups

(6000 4000))) ;holds

This module has two inputs: the clock input 'CLK and a data input 'D. It

has a single state variable, 'Q, the value of which is computed simply as the

value of 'D, and two outputs, both with inertial delay, whose values are those

of 'Q and its negation.

A setup time is given for each input. (In the above example the setups

6000 and 4000 correspond to the inputs 'CLK and 'D, respectively.) Each of

these represents the minimum period during which the corresponding input

is required to remain constant immediately before a triggering edge, when

the value of the clock input Changes from low to high (i.e., from 'F to 'T)

for a positive-edge-triggered device, or from high to low for a negative-edge-

triggered device. Thus, the first setup, corresponding to the clock input

itself, is the parameter that is conventionally called the clock low (in the

positive-edge case) or clock high (in the negative-edge case).

Similarly, each hold time represents the minimum period during which

the corresponding input is required to remain constant immediately after a

triggering edge; the hold time for the first input is conventionally called the

clock high or low, in the positive- and negative-edge cases, respectively.

The minimum clock period is the minimum required elapsed time between

successive triggering edges. In the above example, the minimum period of

:1.2000 happens to coincide with the sum of the clock high and low times, but

thisneed not be the case (seeSubsection 5.2).

9

For a sequential module rood, the computation of (STEP rood inp outp

t) involves the computation of the slate of rood at time t as determined by

lap. This state is an assignment of values to the state variables of rood. It is

a recursive function of t, behaving am follows: The state of mod at time ' (0

• 0) is the r_ull state, which assigns the value 'X to each state variable. As

long as the inputs _re well-behaved, the state changes only when a triggering

edge occurs, at which time a new state is computed from the state forms,

using the previous state values and the current input values. On the other

hand, if at any time any input changes in violation of a setup or hold time,

then the state becomes null.

Execution of iSTEP rood inp outp t) for a sequential rood is the same

as for a combinational module, except that the values that are posted on the

output waveforms depend on both the current input values and the current

state, where the latter in turn must be computed from the input history.

As an exampl e, we shall trace the behavior of the state variable ' Q of the

D-flip-flop in response to a sample input packet. For the clock waveform,

we take the following well-behaved clock pulse wl, which exhibits a regular

period of 20000 over the interval from ' (0 0) to ' (110000 0):

'((F (11O0O0 0))
(F (90000 0))

(F . (70000 0))

(F . (SO000 0))
(F (30000 0))

(F (10000 0))

(T (100000 . 0))
(T (80000 . 0))
(T (60000 . 0))
(T (40000 . 0))
(W (20000 . 0))
(W (0 0)))

For the data input, we take the following waveform w2:

,((W (59000 0)) (F (30000. 0)) (T (0 0))).

Thus, the value of the input signal ' D is ' F on the (half-open) interval from

'(30000 . 0) to'(59000 0) and ' T at all other times. The value of ' Q,

which is initially 'X, becomes 'T at the first positive-edge (at time ' (20000

. 0)). Since the value of 'D changes to 'F at time '(30000 . 0), this
becomes the new value of ' Q at the next triggering edge (at ' (40000 0)).

The 'D value changes again at ' (59000 . 0), but at the following edge (at

(60000 . 0)), the 'D setup time is violated, so 'Q becomes 'X. This state

persists until the next edge (at ' (80000 0)), when the final value 'T is

assumed.

.rr

I0

w

w

3.3 Structural Modules

A structural module has five components:

(1) a list of global input signal names;

(2) a list of submodules, which may be of any type, including the structural
type;

(3) corresponding to each submodule, a list of output signal names;

(4) corresponding to each submodule, a list of input signal names, each of

which is either an output of some submodule or a global input;

(5) a list of global output signal names, each of which is an output of some
submodule.

Structural modules may be conveniently defined by means of the DEFCIR-

CUIT macro. For example, the following represents a D-flip-flop constructed

by cross-coupling nand gates (where the module NAND3 is a 3-input nand gate

with a definition similar to that of NAND), as shown if Figure 1:

(DEFCIRCUIT D-WITH-NANDS

(CLK D) ;inputs

(O ON) ;outputs

((NAND) (S2 Sl) (AI))

((NAND) (AI CLK) (BI))

((NAND3) (Sl CLK B2) (A2))

((NAND) (A2 D) (B2))

((NAND) (BI ON) (O))

((NAND) (Q A2) (QN)))

Aside from simple syntactic requirements for the lists of input and output

signals, there is only one restriction on the structure of a circuit: we allow

no zero-delay cycles. (For a formal statement of this restriction, see the

definition of DKLTA-ACYCLIC.) The purpose of this restriction is to guarantee

that the simulation of a structural module always terminates.

The STEP function is defined so that it accepts structural as well as be-

havioral modules as its first argument rood. if rood is structural, however, the

11

D_3--

CI.K'¢-t

NAND

@
r'x_
I_f

Figure 1: D-flip-flop

12

w

third argument is more complicated. In general, instead of a simple wave

packet, the expected argument is an object called a bundle for rood. This

notion is defined recursively as follows: if rood is a behavioral module, then

a bundle for rood is just an output packet for rood; if rood is structural, then

a bundle for rood is a list consisting of a bundle for each of its submodules.

Thus, a bundle for rood is a list structure consisting of a waveform correspond-

ing to each of the signals produced by rood. In particular, a bundle for rood

Always determines an output packet for rood, namely, the list of waveforms

that correspond to the output signals of rood.

The STEP function is also defined recursively according to the structure

of rood: if £np is an input packet and bun is a bundle for a structural module

rood, then (STEP rood inp bun t) is the bundle for rood whose i °' member is

(STEP mod_ inpi bun, _c), where

(a) modi isthe i*h submodule of rood,

(b) £npi isa listof the waveforms corresponding to the input signals to

modi, extracted from ±np and bun through analysisof rood,and

(c) buni isthe i*h member of bun.

4 Simulation

4.1 The Function SIM

SIN is a function of four arguments: (i) a module rood,(2) a packet £np of

waveforms corresponding to the module's inputs, (3) a time tf at which the

simulation is to terminate, and (4) a bound d on the delta components of

allevent times. The ret_urnedvalue isa packet of output waveforms that is

produced by simulating the module over the time intervalfrom the origin

'(0 . 0) to timetf.

In order to describe thisprocess more precisely,lett_,t2,...,t,,be the

increasing sequence of ._11 times between ' (0 O) = tl and zf = t,, that

have delta components not exceeding d. The computation of (SIM rood £np

tf d) involves a callto STEP corresponding to each of these times: Let

buno, the initialbundle for the simulation,be the bundle for rood in #hich

every waveform has the constant value _X (i.e,every waveform is the alist

13

' ((X . (0 0)))). For i = i,... ,n, let buni be the value of (STEP rood

inp bun_-1 t,). The value of (SIM ,,od inp tf d) is the output packet

determined by the bundle bun,,.

4.2 Delta Constraints

Note that the delta bound d is required to reduce the set of times within

a given interval to a finite set, and thus to guarantee termination of the

reeursive function SIH. In order to produce the intended behavior of this

function, we must impose constraints on its arguments that ensure that the

times of all scheduled events have delta components bounded by d.

This will require several definitions. First, we shall say that a waveform w

is bounded by d if no event time occurring in w has delta component exceeding

d. Next, we define the level of a signal in a circuit to be the maximum of

the lengths of all zero-delay paths through the circuit starting at the given

signal. A waveform v is admissible for a signal s with respect to d if l < d

and w is bounded by d- t, where l is the level of s. A bundle, or similarly, an

input packet, for rood is admissible with respect to d if each of its waveforms

is admissible for the signal with which it is associated.

Finally, we may state the following important result: If inp and bun are an

admissible input packet and an admissible bundle for rood wrt d, respectively,

then (STEP rood inp bun t) is an admissible bundle for rood wrt d. It follows

that if inp is an admissible input packet for raod wrt d, then for any time t,

every waveform in the bundle (SIM rood inp t d) is bounded by d.

It should be noted that our primary motivation for including delta delays

in our language, in spite of the inherent complications described above, is a

coraraitment to adhere to the VHDL delay model. All of the modules that we

have defined in this language, including all of the examples presented herein,

exhibit only positive delays. Thus, for our purposes, we may always take the

d parameter of SIM to be 0, and need never deal with times with nonzero

delta components.

4.3 Efficient Execution

The definition of the function aiM, as described at the beginning of this

section, is designed to be as theoretically simple as possible. Its execution,

on the other hand, is impractical for two reasons:

w

14

1. Every call to STEP for a sequential module requires complete calculation

of the module's state from its input packet.

2. STEP is called at every legal time during the simulation interval, al-

though it has no effect at times when no events are scheduled.

For the purpose of execution, therefore, we have defined a more efficient func-

tion, FAST-SIM, which may be shown to be equivalent to SIM. This efficiency is

achieved by eliminating both aspects of the redundancy noted above. Firstly,

it is defined in terms of a function FAST-STEP, which records the states of

sequential modules, so that at each step, a state need only be updated rather

than entirely recomputed. Secondly, FAST-SIM is truly event-driven: it calls

FAsT'sTEP only at times whena relevant eVent]s scheduled.

As an illustration, let us consider a call to SIH with the following argu-

ments: (1)the sequential module D-FLIP-FLOP; (2)the input packet consisting

of the waveforms wl and w2, defined in Subsection 3.2; (3) the terminal time

' (200000 . 0); (4) the delta bound O. This results in 200001 calls to STEP

(this number would be even larger if we changed the fourth argument). Each

of these calls requires a recomputation of the state by reexamining the entire

input history, which is clearly impractical. The execution of FAST-SIM on

the same arguments, on the other hand, involves only 18 calls to FAST-STEP,

each of which requires only updating the state in response to the most recent

events. The value returned by

(FAST-SIM (D-FLIP-FLOP) (LIST wl w2) ,(200000 O) O)

is the output packet

'(((T 86000 0) (X 64000 . 0) (F 46000 0)

(X 44000 0) (T 26000 0) (X 0 0))

((F 86000 0) (X 64000 O) (T 46000 0)

(X 44000 0) (F 26000 0) (X 0 0))).

Note that these waveforms record the behavior of the two output signals

whose (delayed) values are defined to be those of the state variable 'Q and

its negation. It is instructive to compare this result with the trace of ' Q given

in Subsection 3.2.

w

15

5 Specification

Let modc and moda be two modules. We shallsay that modc isan implemen-

tation of moda, or equivalently, that moda is a specification of mode, if the

following relation holds: Given a number d, a time t, and an input packet

inp for moda wrt d, inp is also an input packet for mode wrt d and (SIM

moda inp t d) generalizes (SIM mode ±np t d). If one module is both an

implementation and a specification of the other, then we say that the two

are equivalent.

This notion of specification is central to our approach to circuit veri-

fication. Our goal is to characterize the behavior of circuits by deriving

behavioral modules that are specifications of given structural modules. For

example, the correctness of our flip-flip implementation D-WITH-NANDS can

be established by showing that it is an implementation in the above sense of

the sequential module D-FLIP-FLOP. The proof of this theorem remains to

be mechanically checked, but we may illustrate it by comparing simulations

of the two modules on the same input. Thus, when (D-FLIP-FLOP) is re-

placed with (D-WITH-NANDS) as the first argument in the call to FAST-SIM

appearing in the previous section, the following output packet is returned:

'(((T 67000 O) (F 46000 O) (T 24000 O) (X 0 0))

((F 69000 O) (T 44000 O) (F 26000 O) (X 0 0)))

It is easilyseen that this output of the implementation D-WITH-NANDS is

indeed generalized by that of the specificationD-FLIP-FLOP . It is also

worth noting that thissimulation of the implementation involves35 callsto

FAST-STEP on D-WITH-NANDS along with 76 callsto STEP on itscombinational

submodules, as compared to only 18 callsto FAST-STEP for D-FLIP-FLOP.

Thus, there are two distinct benefits of establishing specifications for mod-

ules: concise behavioral description and efficient simulation.

In order to facilitate the verification of more complex circuits, we shall

require the following basic results:

1. If formc is one of the output forms of a behavioral module mode, forma

is another form such that the value of forma generalizes the value of

formc for any assignment of variable values, and moda is the result of

replacing formc in mode with forma, then mode implements moda.

t

16

, If modc implements moda, and structc is the result of replacing an

occurrence of moda in structa with modc, then structc implements

stz_cta.

1

.

If rood1 is a structural module that contains a structural module sub as

a submodule, and rood2 is the result of "flattening" rood1 by replacing

the occurrence of sub with the list of submodules of sub (and recon-

structing all input and output lists accordingly), then rood1 and ,,od2

are equivalent.

Ifmodc is a behavioral module that has an output with either TRANSPORT

or INERTIAL delay mode, and moda is the result of changing this delay

mode to NONDETEP_INISTIC, then modc implements moda.

. If modc is a behavioral module that has an output with delay range

(minl max1), and moda is the result of replacing that delay range

with (rain2 max2), where rain2 < minl and max2 > max:t, then

modc implements moda.

The first of these results is trivial, and its application often amounts

to mere tautology checking: if a complicated output form may be shown

to be logically equivalent to a simpler form, then the simpler form may be

substituted without affecting functionality.

The second result is significant in that it provides for hierarchical circuit

analysis: Suppose we wish to analyze a complex structural module that has

structural components. Once behavioral specifications ate derived for the

components, they may be substituted to yield a specification for the original

structure, which is a step toward its behavioral specification.

As applications of the other three results, we have implemented two pro-

cedures for deriving behavioral specifications (combinational and sequential,

respectively) for certain classes of structural modules. These are described

below.

5.1 Combinational Specifications

Any structural module modc that (a) is constructed entirely of comb:au-

tional components, and (b) contains no loops, may be shown to be an im-

plementation of some behavioral combinational module moda. The function

17

COMB-EEDUCE, _fter verifyingthat a given structure mode satisfiesthese re-

quirernents,automatically generates the appropriate specificationmoda, con-

structingitscomponents as follows:

I. The input signalsof moda are the global inputs of mode.

2. The form for each output iscomputed by tracingbackwards from each

output, constructingby means ofa seriesof substitutionsan expression

for the output valuein terms of inputs alone.

3. The delay range for each output is determined by the minimum and

maximum of the totaldelays along allpaths from inputs.

4. The delay mode forevery output isNONDETERMINISTIC.

The following l-bitadder, builtout of hand gates as shown in Figure 2,

isan example of a circuitthat meets the above requirements:

(DEFCIRCUIT ADDERI

(A B C-IN) ;inputs

(S C-OUT) ;outputs

((NAND) (A B) (TI)) ;il

((NAND) (A TI) (T2)) ;i2

((NAND) (B TI) (T3)) ;i3

((NAND) (T2 T3) (T4)) ;i4

((NAND) (C-IN T4) (T5)) ;i5

((NAND) (C-IN T5) (T7)) ;i6

((NAND) (T5 T4) (T6)) ;i7

((NAND) (T5 T1) (C-OUT)) ;iS

((NAND) (T7 T6) (S))) ;i9

The intended behavior of thisdevice may be described in terms of the

functions M-SUM3 and M-IdAJ3, which compute the sum modulo 2 and the

majority, respectively,of three bits. Assuming that the inputs A, B, and

C-IN remain stablefor a suf_cientlylong period,the outputs S and C-OUT of

ADDERI should eventually stabilizewith the values (M-SUM3 a B C-IN) and

(N-HA J3 A B C-IN), respectively.

As a firststep toward a verifiedformalizationof thisdescription,we apply

COMB-REDUCE to ADDERI, computing the followingspecification:

18

I

r T_

NAND

?I

T_

c-_ y']

NAND

LS_

NAND

NAND

!::

C-OOT

Figure 2: l-Bit a.dder

19

'(COMBINATIONAL

(A B C-IN)

((M-NAND (M-NAND C-IN

(M-NAND C-IN

(M-NAND

(M-NAND

(M-NAND A (M-NAND A B))

(M-NAND B (M-NAND A B)))))

(M-NAND (M-NAND C-IN

(M-NAND (M-NAND A (M-NAND A B))

(M-NAND B (M-NAND A B))))

(M-NAND

(M-NAND C-IN

(M-NAND

(M-NAND A S)))

(M-NAND A (M-NAND A B))

(M-NAND B (M-NAND A B)))))

(M-NAND A (M-NAND A B))

(M-NAND B (M-NAND A B))))

(NONDETERMINISTIC NONDETERMINISTIC)

((4ooo 12000) (4000 . IOOOO)))

The two outputs of this module will stabilize after maximum delays of 12000

and 10000, respectively, assuming stable inputs. Their values, however, are

given by rather complicated expressions in terms of M-NAND. To complete our

analysis of ADDER1, we must show that these two expressions are tautolog-

ically equivalent to the forms (M-SUM A B C-IN) and (M-MAJ3 A B C-IN).

Once this is done (automatically by the Nqthm prover), we may conclude

that the following is a specification for ADDERI:

,(COMBINATIONAL

(A B C-IN)

((M-SUM3 A B C-IN)

(M-MAJ3 A B C-IN))

(NONDETERMINISTIC NONDETEKMINISTIC)

((4000 . 12000) (4000 10000)))

5.2 Sequential Specifications

Our algorithm for deriving a sequential behavioral specification of a struc-

tural module with sequential components requires that (a) the structure con-

tains no cycles passing only through combinational components, (b) all global

2O

_.T

B

.

=

w

outputs are expressible as functions of state alone (and not of global inputs),

(c) all sequential submodules have the same trigger and are connected to the

same clock input, and (d) the minimum delays of the outputs of the sequen-

tial components are long enough to respect the hold times of any sequential

inputs to which they are connected (either directly or th_:ough paths con-

sisting only of combinational components). The function SEQ-REDUCE, after

verifying that a given structure mode satisfies these requirements, automat-

ically generates a behavioral specification moda. As a preliminary step, the

signals of mode and its submodules are all renamed in order to avoid any

conflicts. The components of moda are then derived as follows:

I. The input signalsofmoda are the global inputs of mode.

2. The triggerofmoda isthe triggerof the sequentialsubmodules of mode.

3. The state variablesof moda are the state variablesof allthe sequential

components of raodc.

4. The stateforms ofmoda are computed by tracingbackwards from each

state variable of mode to sequential outputs and global inputs, and

constructing by means of a seriesof substitutionsan expression for the

state variablein terms of state variablesand globalinputs.

e

,

The output forms of moda correspond to the global outputs of mode;

they are computed by tracingbackwards from each globaloutput to se-

quential outputs and constructingby means of a seriesof substitutions

an expression for the output value in terms of state variablesalone.

The delay range for each output is determined by the minimum and

maximum of the totaldelaysalong allpaths from sequentialoutputs.

. The delay mode of an output is NONDETERIdINISTIC unless it is gen-

erated directlyby a sequentialcomponent of mode, in which case it

inheritsitsmode from that component.

1 The setup and hold times of each input are computed as the rnJ:ni,aum

times required to respect the setup and hold times of the inputs of the

sequential components to which they are connected.

21

9. The clock period is the maximum of the longest clock period of sequen-

tim component and the time required for internal signals to stabilize in

order to respect setup times of sequential inputs.

As anextremely simple example, we consider the %llowingmodule, con-

structed by connecting two D-flip-flops (as illustrated in Figure 3):

(DEFClRCUIT DOUBLE-FLIP-FLOP

(CLK D) ;inputs

(OUT OUTN) ;outpats

((D-FLIP-FLOP) (CLK D) (Q QN))

((D-FLIP-FLOP) (CLK Q) (OUT OUTN)))

SEQ-REDUCE derives the following behavioral specification for this struc-
ture:

'(SEQUENTIAL

(CLK-2 D-2)

(Q-I (M-NOT Q-I))

(INERTIAL INERTIAL)

((4000 6000)

(4000 6000))

POSITIVE-EDGE

(Q-O Q-I)

(D-2 Q-O)

12000

(6000 4000)

(6000 4000)))

;type

;inputs

; outputs

;modes

;delays

;trigger

;state variable

;state form

;period

;setups

;holds

Note, however, that the structure only barely satisfies the last item in our

list of preconditions for SEQ-REDUCE, since the minimum output delay of

D-FLIP-FLOP happens to coincide with the setup time of 4000. That is, if

the definition of the flip-flop were altered by replacing the lower limit of the

first delay range by any number smaller than 4000, then DOUBLE-FLIP-FLOP

would be rejected by SEQ-REDUCE.

Our final example is a 4-bit loadable shift register com;)osed of nand gates

and D-flip-flops. We define this structure hierarchically, a:: shown in Figure 4,

using a component consisting of three gate._ and a flip-tiop:

22

DX-'3

D-.'-'L l P-FLOP D-FLI P-FLOP

CLK QN

, =

Figure :i: DOUBLE-FLIP-FLOP

2:i

(DEFCIRCUIT SHIFTER-COMPONENT

(CLK INI IN2 IN3 IN4)

(O)
((NAND) (INI IN2) (Sl))

((NAND) (INS IN4) (S2))

((NAND) ($I $2) (D))

((D-FLIP-FLOP) (CLK D) (0 QBAR)))

;inputs

;outputs

The register is constructed from four of these components:

(DEFCIRCUIT SHIFTER

(CLK LOAD AIN BIN CIN DIN) ;inputs

(AOUT BOUT COUT DOUT) ;outputs

((INV) (LOAD) (SHIFT))

((SHIFTER-COMPONENT) (CLK DOUT SHIFT AIN LOAD) (AOUT))

((SHIFTER-COMPONENT) (CLK AOUT SHIFT BIN LOAD) (BOUT))

((SHIFTEA-COMPONENT) (CLK BOUT SHIFT CIN LOAD) (COUT))

((SHIFTEA-COMPONENT) (CLK COUT SHIFT DIN LOAD) (DOUT)))

The following behavioral specification is generated by SEQ-REDUCE:

'(SEQUENTIAL

(CLK-5 LOAD-5 AIN-5 BIN-5 CIN-5 DIN-5)

(0-3-I 0-3-2 0-3-3 0-3-4)

(INERTIAL INERTIAL INERTIAL INERTIAL)

((4000. 6000) (4000 . 6000)
(4000 . 6000) (4000 . 6000))

POSITIVE-EDGE

(Q-3-I 0-3-2 0-3-3 0-3-4)

((M-NAND (M-NAND Q-3-4 (M-NOT LOAD-5))

(M-NAND AIN-5 LOAD-5))

(M-NAND (M-NAND Q-3-I (M-NOT LOAD-5))

(M-NAND BIN-5 LOAD-5))

(M-NAND (M-NAND 0-3-2 (M-NOT LOAD-5))

(M-NAND CIN-5 LOAD-S))

(M-NAND (M-NAND 0-3-3 (M-NOT LOAD-5))

(M-NAND DIN-5 LOAD-5)))

;inputs

;outputs

;modes

;delays

;trigger

;state variables

;state forms

w-

24

r

NANO

IW2 P

IN3 _

IMt

AIM

BIN

SllIrJT._-c"OMPON[:W'I'

r

L----

I
DIN _ ,_

°y-Y
c_FI

Ol
I

I

___ BC,b'?

Figure 4: Loadable shift register

w

25

14000

(6000 10000 8000 8000 8000 8000)

(6000 o o o o o))

;period

;setups

;holds

This sequential module has four state variables and four matching outputs,

corresponding to the four flip-flops. It also has four "data" inputs, along

with a clock and a "load" input. On each cycle, a new state is computed as

follows: if the load is high, then each state variable assumes the value of the

corresponding input; if the load is low, then the values of the state variables

are rotated. Although this behavior may be difficult to ascertain from the

state forms shown above, it becomes clear once the following tautology is

noted:

(EQUAL (M-NAND (M-NAND Q (M-NOT LOAD))

(M-NAND A LOAD))

(M-0R (M-AND LOAD A)

(M-AND (M-NOT LDAD) Q))).

This is our only example of a sequential module with a minimum clock pe-

riod (14000) that exceeds the sum of the clock setup and hold times (12000).

The reason for this is that a signal that is sent from one flip-flop to another

must arrive sufficiently in advance of a triggering edge to respect the receiver's

setup time. Thus, the time elapsed from one positive edge to the next must

be at least the sum of the maximum delay of the sent signal (600'0), the del_y

along the path to the receiver (4000), and the setup time of the receiver's

input (4000).
It is also worth noting that the hold times for all but the clock input are

0. The reason for this is that the delay along every path from an input to a

flip-flop is at least as long as the flip-flop's hold time.

6 Future Work

The HDL that we have described is sufficiently expressive for the modeling

of both synchronous and asynchronous devices. Thus far, however, we have

only outlined a methodology for specifying and verifying combinational and

synchronous circuits designed in this language. Many of the theorems on

which this methodology is based remain to be formalized and mechanically

26

=

checked. Once this body of theorems is established, our next goal will be to

extend the theory to the asynchronous realm. This effort will be driven by the

design of a circuit that achieves communication between two asynchronous

processors according to a version of the protocol that was formalized in [7].

The formal specification and verification of this design will be delivered with

the report on Task 5.

References

[1] Bevier, William R. and Young, William D., Machine checked proofs of

the Design and Implementation of a Fault-Tolerant Circuit, Technical

Report 62, Computational Logic, Inc., NASA CR-182099, November

1990.

[2] Borrione, Dominique D., Pierre, Laurence V., and Salem, Ashraf M.,

Formal verification of VHDL descriptions in the PREVAIL environment,

in IEEE Design and Test, June, 1992.

[3] Boyer, R. S. and Moore, J, A Computational Logic Handbook, Academic

Press, Boston, 1988.

[4] Brock, Bishop C. and Hunt, Warren A., Jr., A Formal HDL and its use

in the FM9001 verification, in Proceedings of the Royal Society, 1992.

[5] Brock, Bishop C., Hunt, Warren A., Jr., and Young, William D., In-

troduction to a formally defined hardware description language. In Pro-

ceedings of the IFIP Conference on Theorem Provers in Circuit Design,

June 1992.

[6] Filippenko, Ivan V., VHDL verification in the State Delta Verification

System, in A CM SIGDA International Workshop on Formal Methods in

VLSI Design, January 1991.

[7] Institute of Electrical and Electronic Engineers, IEEE Standard VHDL

Language Reference Manual, 1988.

[8] Moore, J Strother, A Formal model _of asynchronous communication

and its use in mechanically verifying a biphase mark protocol, Technical

Report 68, Computational Logic, Inc., NASA CR-4433, June 1992.

27

w _

[9] Young, William D., Verifying the interactive convergence clock synchro-

nization algorithm using the Boyer-Moore theorem prover, Technical

Report 77, Computational Logic, Inc., NASA CR-189649, April 1992.

Appendix

;; WAVEFO_S

;;A moment in _ime is a pair o_ numbers:

(defn timep (x)

(and (lis_p x)

(nu_berp (car x))

(numberp (cdr x))))

(defn zero-time ()

,(o . o))

;;Moments in _ime are ordered lexicographically:

(deln =lossp Ca b)

(if (equLl (car a) (car b))

(loesp (cdr a) (cdr b))

(leesp (car a) (car b))))

(doln _loq Ca b)

(nor (_iossp b a)))

;;Events are scheduled a_ _imes _ha_ are computed from the current time

;;and propagation delays as follo_s:

(dsfn _plus (_0 delay)

(if (zerop delay)
(cone (car tO) (add1 (cdr tO)))

(cons (plus (car tO) delay) 0)))

;;£ waveform is an alis_ _ha_ associates signal values _i_h _hs _imea

;;at _hich they are assumed by _he signal:

28

r

i

(dofn wavoformp (w)

(if (limtp w)

(if (llstp (¢dr w))
(and (waveformp (o_ w))

(timop (cdar w))
(tloeep (¢dadr w) (cdar w))

(not (equal (caadr w) (caar ,))))

(equal (cdar .) (zero-time)))
f))

;;£ packet is a list of waveforms:

(defn packetp (i n)

(if (zerop n)

(nlietp I)

(and (lietp I)

(waveformp (car i))

(packetp (cdr i) (sub1 n)))))

;;The value of a signal at a given _ime is computed from its waveform

;;as follows:

(defn gave-value (gave time)

(Lf (lietp wave)

(if (tleeep time Ccdar wave))

(wave-value (cdr wave) time)

(cae.r wave))

f))

(darn packet-values (packe= time)

(if (listp packet)

(cone (wave-value (car packe_) time)

(packet-values (cdr packet) time))

(3)3

;;To compute the final value of a waveform:

(dole last-value (e)

(cur w))

(dole las_-valuee (p)

(if (llstp p)
(co=e (las_-value (car p))

29

()))
(last-values (cdr p)))

;;There is no restriction on the values that may be assumed by a signal.

;;The value *l, hoverer0 is special -- it represents an unknovn value.

;;Any other value is "definite". A ,aveform is definite it never assumes

;;the value 'It

(defn defvalp (v)

(not (equal v 'x)))

(dsfn defgavep (g)

Ci_ (listp ,)

(and (defvalp (tsar w))

(defwavep (cdr _)))

t))

;;k value vl generalizes v2 if vl is either v2 or 'X. A ,ave ,1

;;generalizes a wave ,2 if at all =imss. the value of gl generalizes the

;;value of ,2:

Cdefn genvalp (vl v2)

(or (equal vl v2) (equal vl 'x)))

(defn genwavep (gl w2)

(if (and (listp _I) (listp w2))

(and (genvalp (tsar vl) (tsar ,2))

(if (tlessp (¢dar w2) (cdar wl))

(genwavep (cdr wl) ,2)

(if (tlessp (cdar ,1) (cdar w2))

(gen_avep wl (cdr w2))

(or (equal (cdar ,1) (zero-time))

(gengavep (cdr wl) (cdr w2))))))

(Clams? (plus (count ,I) (count ,2)))))

(defn gonpacketp (pt p2)

(iZ (listp pl)

(and (gengavep (car pl) (car p2))

(genpacketp (cdr pl) (cdr p2)))

(nlistp p2)))

;;His_ories and futures:
=

F

3O

T

(defn wave-hisZory (wave time)

(if (lis_p wave)

(if (tlessp time (cdar wave))

(wave-history (:dr wave) rise)

gave)

wavo))

(defn packet-history (packet time)

(if (lietp packet)
(cone (wave-history (car packe_) time)

(packet-history (cdr packet) time))

(defn packet-histories (packets tO)

(if (listp packets)

(cons (packet-history (car packets) tO)

(packet-histories (ccLrpackets) tO))

()))

(defn wave-future (wave time)

(if (listp wave)

(if (tlesep time (cdar wave))
(cone (car wave) (wave-future (cdr wave) time))

(if (tlessp (cdar wave) time)

(list (cons (caar wave) time))

(list (car wave))))

wave))

(defn packet-future (packet time)

(if (lisZp packet)
(cons (gave-future (car packet) time)

(packet-future (cdr packet) time))
()))

;;To determine whether some waveform of a packet squires a new value

;;at a given time:

(defn new-value-p (wave _ime)

(if (listp wave)

(if (tlesep time (cdar wave))

(nev-value-p (cdr wave) time)

(equal time (cdar wave)))

f))

31

L

w

(deIn iome-nse-value-p (packet time)

(if (lietp packet)
(or (nee-value-p (car packet) time)

(some-nei-value-p (cdr packet) time))

f))

;;The folloeing two functions implement "transport" and "inertial"

;;delay, as defined in the _HDL standard. They may be used to schedule

;;a transaction with value V at time TI on a waveform W, assuming that V

;;and all values of _ are definite, and that T1 exceeds the current time

;;TO:

(defn post-transport-event-definite (_ v tl)

(if (llstp _)

(if (_leesp (cdar _) tl)

(if (equal (¢aar _) v)

(cons (cons v _1) _))

(post-transport-event-definite (cdr .) v tl))

f))

(defn poe_-iner_ial-event-definite (_ v tO tl)

(if (lietp _)

(if (_lessp tO (cdar _))

(if (and (tlessp (cdar _) tl) (equal v (caar _)))

(pos_-inertial-event-definite (cdr _) v _0 (cdar e))

(post-inertial-even_-de_inite (cdr _) v tO tl))

(if (equal v (caar _))

(cone (cons v tl) _)))
f))

;;In the presence el indefinite values, _e use the following more

;;_eneral functions. Instead of fixed delays, _e allo_ delay ranges:

;;we assume that the time of the event is at most T2 and (if T1

;;precedes T2) at least T1, _here T12 and T2 both exceed TO:

(defn poet-transport-event (_ v tO rl t2)

(if (llltp i)

32

f))

(if (tlsmsp tO (cdar .))

(if (_isssp (cdar w) t2)

(if (equal v (cast .))

(post-_r_spor_-event (cdr .) v cO tL (cdar .))

(if (tlessp t% t2)

(if (tlessp tL (cd_Lr .))

(if (listp (cdr g))

(if (equal v (caadr .))

(if (equal v 'x)
(cdr w)

icons (cons v t2)

(cons icons 'x (cdar ,))
(poat-rr_spor_-even_

(cddr .) v tO

t% (cdadr w)))))

(post-transport-event (cdz w) v tO _I _2))

(if (tlassp (cdar w) tl)

(it (equal (tsar w) 'x)

(cons (cons v t2) w)

(if (equal v 'x)
(cons (cons 'x rl) w)

(cons (cons v t2) (cons (cons"x tl) w))))

(if (listp (cdr w))

(if (equal (caadr w) 'x)
(cons (cons v t2) (cdr w))

(if (equal v 'x)
icons icons 'x rl) w)

(cons (cons v t2)
(cone (cons 'x tl) (cdr w)))))

_)))
(cons (cons v _2) w)))

(post-transport-event (cdx w) v tO tL =2))

(if (equal (caar w) v)

u

(if (equal (cast w) 'x)
(cons (cons v _2) u)

(if (_lesep _1 t2)

(if (equal v 'x)
(cons (cons 'x tt) w)

(cons (cons v =2) (cons (cons 'x =t) w)))

(cons (cons v _2) w)))))

33

(dsfn poe_-insr_ial-event (_ v tO tl t2)

(if (lls_p g)

(if (tlossp tO (cdar w))

(if (_lessp (cdar g) t2)

(if (equal v (tsar w))

(post-inertial-event (cdr g) v tO tl (cdar e))

(if (and (tlessp (cdar ,) _I)

(or (equal (cast ,) 'X)

(and (equal v 'x)

(not (equal (caar w) (cdadr w))))))

(pos_-iner_ial-event (cdr w) v tO (cdar w) t2)

(poet-inertial-event (cdr g) v tO tl t2)))

(poet-inertial-event (cdr w) v tO tl t2))

(if (equal (caar w).v)

W

(if (equal (tsar w) 'x)

(cons (cons v t2) w)

(if (tlessp tl t2)

_if (equal v 'z)

(cone (cons 'x tl) w)

(cone (cons v t2) (cone (cone 'z tt) w)))

(cons (cons v t2) w)))))
f))

;;We also provide a third delay mode, NO,DETERMINISTIC, which generalizes

;;both T_SPORT and INERTIAL:

(dsfn poe_-nondsterministic-event (w v tO _1 _2)

(if (lis_p w)

(if (tlsssp tO (cdar w))

(if (tlessp (cdar _) tl)

(if (lietp (cdr ,))

(if (equal (caar w) (caadr w))

(poet-nondeterministic-even_ (cdr w) T tO tl _2)

(post-nondeterministic-event

(cdr w) v tO (cdar w) t2))

(poe_-nondeterninistic-event (cdr w) v tO tl t2))

(if .(or (equal (cast g) 'x) (tleq t2 tl))

(if (equal (tsar ,) v)
W

(cons (cons v t2) w))

(if (equal v 'x)

(cons (cons 'x tl) _)

34

.r

f))
(cona (cons v _2) (cons (cons 'x tl) w)))))

(disable type)

;We shall inplenen_ three module types, COMBINATIONAL, SEQUENTIAL, and

;;STRUCTURAL. Combinational and sequential nodules are called BEHAVIORAL.

(defn conbinationalp (mod)

(equal (type mod) 'combinational))

(defn ssquentialp (mod)

(equal (type nod) _sequential))

(defn behavloralp (mod)

(or (comblna_ionalp mod) (sequentialp mod)))

(defn 8_ructuralp (mod)

(equal (type mod) 'structural))

;;Associated _i_h any module are lists of inputs and outputs:

(dsfn inputs (mod)

(cadrnod))

(disable inputs)

(defn outputs (sod)

(caddr sod))

(disable outputs)

(dofn number-of-inputs (mod)

(lens_h (inputs mod)))

35

(defn number-of-outputs (mod)

(length (outputs mod)))

;;Module behavior will be characterized by a "step" function of 4

;;arg_iments: (I) a module, (2) an input packet, (3) an output packet,

;;and (4) a time. The value returned is the result of updating the

;;output packet by executing any events in the input packet that occur

;;aZ the given time. This function will be required to exhibit the

;;follo.i_ five properties (although I don't kno. why I care about

;;the last t.o):

;; (I) Monotonic:

(IMPLIES (AND (PACKETP INPI (NUMBER-OF-INPUTS mod))

(PACKETP INP2 (NUMBER-OF-INPUTS mod))

(GENPACKETP INPI IMP2)

(PACKETP OUT1 (NUMBER-OF-OUTPUTS mod))

(PACKETP OUT2 (NUMBER-OF-OUTPUTS mod))

(GENPACKETP OUTPI OUTP2)

(TIMEP TO))

(GENPACKETP (STEP mod INPI OUTP1 TO)

(STEP mod INP20UTP2 TO)))

;; (2) Monpredictivs:

;;

;;

;;

;;

;;

;;

;;

(IMPLIES (AND (PACKETP IMP1 (NUMBER-OF-INPUTS mod))

(PACKETP INP2 (NUMBER-OF-INPUTS mod))

(EQUAL (PACKET-HISTORY INPI TO)

(PACKET-HISTORY IMP2 TO))

(PACKETP OUT (NUMBER-OF-OUTPUTS mod))

(TIMEP TO))

(EQUAL (STEP mod INP10UTP TO)

(STEP mod IMP20UTP TO)))

;;For combinational modules, Property (2) may be strengthened as follows:

;;

;;

;;

;;

;;

;;

;;

(IMPLIES (AND (PACKETP INPI (NUMBER-OF-INPUTS mod))

- (PACKETP IMP2 (NUMBER-OF-INPUTS mod))

(EQUAL (PACKET-VALUES INPI TO)

(PACKET-VALUES INP2 TO))

(PACKETP OUT (NUMBER-OF-OUTPUTSmod))

(TIMEP TO))

(EQUAL (STEP mod IMP10UTP TO)

36

(STEP mad IMP2 0UTP TO)))

;; (3) |onre_roactive:

;;

;;

;;

;;

(IMPLIES (AND (PACKETP IMP (NUMBER-OF-INPUTS mad))

(PACKETP OUT (NUMBER-OF-OUTPUTS mad))

(TIMEP TO))

(EOUAL (PACKET-EISTOR¥ (STEP mad IMP 0UTP TO) TO)
(PACKET-HISTORY 0UTP TO))

;; (4) No=retrospective:

;;

;;

;;

;;

;;

;;

;;

;;

(IMPLIES (AND (PACKETP IMP (NUMBER-OF-INPUTS mad))

(PACKETP OUT1 (_UMBER-OF-OUTPUTS mad))

(PACKETP OUT2 (NUMBER-OF-OUTPUTS mad))

(EQUAL (PACKET-FUTURE OUTPI TO)

(PACKET-FUTURE OUTP2 TO))

(TIMEP TO))

(EOUAL (PACKET-FUTURE (STEP mad IMP OUTPI TO) TO)

(PACKET-FUTURE (STEP mad IMP OUTP2 TO) TO)))

;; (S) Idempotent:

;;

;;

;;

;;

;;

(IMPLIES (A_D (PACKETP IMP (k'UMBER-OF-INPUTS nod))

(PACKETP OUT (NUMBER-OF-OUTPUTS mad))

(TIMEP TO))

(EQUAL (STEP mad INP (STEP mad IMP OUTP TO) TO)

(STEP mad IMP OUTP TO))

;; COMBINATIONAL MODULES

;;Associated gith each output of a behavioral module is a delay node,

;;ehlchnay be INERTIAL, TRANSPORT, or NONDETERMINISTIC, and a delay

;;r_e:

(defn nodes (mad)

;a list of l_tatoms

(cadddrnod))

(disable nodos)

(dafn delays (nod)

37

;a list of pairs of numbers, (MIN . MAX), corresponding to outputs.

;If MAX is NIL (more generally, if MAX does not exceed MIN), then MI_
;is used for both extremes.

(caddddr mod))

(disable delays)

(defn min-delay (pair) (car pair))

(defn max-delay (pair)

(max (car pair) (cdr pair)))

(defn post-event (w v tO mode tl t2)

(case mode

(transport (post-transport-event g v tO tl t2))

(inertial (post-inertial-event w v tO tl t2))

(nondeterministic (post-nondeterministic-event w v tO tl t2))

(otherwise (post-inertial-event _ v tO tl t2))))

(defn post-events (packet values tO modes delays)

(if (listp packet)

(cons (post-event (car packet)

(car values)

tO

(car modes)

(tplus tO (min-delay (car delays)))

(tplus tO (max-delay (car delays))))

(post-events (cdr packet)

(cdr values)

tO

(cdr modes)

(cdr delays)))

()))

(defn combinational-step (mod inp outp time)

(post-events outp

(eval$ 'list

(outputs mod)

(pairlist (inputs mod) (packet-values inp time)))
time

(modes mod)

(delays mod)))

;;Some gates:

38

(deZn a-and Ca b)

(if (oqual a 'f) 'f

(i_ (oqual b 'f) 'f
(if (and (equal a 't) (equal b 't)) 't

'x))))

(darn s-or Ca b)

(if (equal a 't) 't
(if (equal b 'Z) 't

(if (and (equal a 'f) (equal b _f)) 'f

'x))))

(defn a-not (a)

(if Cequal a 'z) 'f

(if (equal a _f) '_

'x)))

(defn m-hand Ca b)

(m-not (a-and a b)))

(darn m-and3 (a b c) I
(if (equal a 'f) 'f

Cif Cequ_ b '_) 'f
(if (oqual ¢ 'f) 'f

(if (and (equal a 't) (equal b 't) (equal c 't)) 't

'x)))))

(darn m-hand3 Ca b ¢)

(m-not (m-and3 a b c)))

(defn inv ()
,(combinational ;type

(a) ;inputs

((m-not a)) ;outputs
(inertial) ;modes

((2000))))

(dofn hand ()

,(combinational ;type

Ca b) ;inputs

((m-nand a b)) ;outputs

(inortial) ;modes

((2000)))) ;delays

39

(defn hand3 ()

'(combinational ;type

Ca b c) ;inputs

((m-hand a b c)) ;outputs

(i_srtial) ;modes

((2000)))) ;delays

;; SEOUEBTIAL MODULES

;;A sequential module has (along with INPUTS, OUTPUTS, MODES, and DELAYS)

;;six additional components:

(defn trigger (mod)

;either POSITIVE-EDGE or _EGATIVE-EDGE

(cadddddr mod))

(defn locals (mod)

;a list of lita_oms (internal state variables) from which output forms

;are constructed (ra_her _han from input variables)

(caddddddrmod))

(disable locals)

(defn state (mod)

;a lis_ of forms (for computing local values), which may involve locals

;and input variables

(cadddddddr mod))

(disable state)

(defn period (mod)

;a number

(caddddddddr mod))

(disable period)

(defn setups (mod)

;a list of numbers

(cadddddddddr mod))

4O

(disable setups)

(defn holds (mod)

;a list ot numbers
(caddddddddddr mod))

(disable holds)

;;A positive-edge-triggered device:

(dora d-flip-flop ()

'(sequential ;type

(clk d) ;inputs

(q Ca-not q)) ;outputs
(inertial inertial) ;modes

((4000 . 6000) ;delays

(4000 . SO00))

positive-edge ;trigger

(q) ;locals

(d) ;state

12000 ;period

(6000 4000) ;setups
(6000 4000))) ;holds

(defn ncopies (n x)

(if (zerop n)
()
(cons x (ncopies (subl n) x))))

(defn kill-state (mod)

(ncopies (length (locals mod)) 'x))

(defn next-state (state inputs mod)

(eval$ 'list

(state mod)

(append (pairlist (locals mod) state)

(pairlist (cdr (inputs mod)) inputs))))

(defn check-clock-setup-or-hold (w time)

(and (equal (caadr ,) (m-not (caar ,)))

(tleq (tplus (cdadr w) time) (cdar w))))

(defn check-data-setups (inp time setups)

(if (listp inp)

41

(and (not (equal (last-value (car inp)) 'x))

(tleq (tplus (cdaar inp) (car setups)) time)

(check-data-setups (cdr inp) time (cdr setups)))

:))

(darn chock-period (g period)

(and (equal (caaddr w) (caar w))

(tleq (tplus (cdaddr w) period) (cdar w))))

(defn check-data-holds (inp edge time holds)

(if (lietp inp)

(and (or (not (new-value-p (car inp) time))

(tleq (tplus edge (car holds)) time))

(check-data-holds (cdr inp) edge time (cdr holds)))

t))

(defn last-time (p)

(if (lietp p)

(if (tlessp (last-time (cdr p)) (cdaar p))

(cdaar p)

(last-time (cdr p)))

(zero-time)))

(defn strip-events (p time)

(if (listp p)

(if (equal time (cdaar p))

(cons (cdar p) (strip-events (cdr p) time))

(cons (car p) (strip-events (cdr p) time)))

p))

(prove-lemma leq-count-strip-events (rewrite)

(not (lessp (count p) (count (strip-events p time)))))

(prove-lemma lessp-count-strip-events (rewrite)

(implies (and (packetp p n) (not (equal (last-time p) (zero-time))))

(lessp (count (strip-events p (last-time p)))

(count p))))

(disable strip-events)

(disable last-time)

(defn compute-state (mod inp trigger)

(if (packetp inp (length inp))

42

w

(let ((time (last-time inp)))

(if (equal time (zero-time))

(kill-state mod)

(if (equal (cdar (car inp)) time)

(if (equal (caar (car inp)) trigger)

(if (and (check-clock-setup-or-hold

(car inp) (car (setups mod)))

(check-data-setups

(cdr inp) time (cdr (setups mod)))

(check-period (car inp) (period mod)))

(next-state (compute-state mod
(strip-events inp time)

trigger)

(last-values (cdr inp))

mod)

(kill-state mod))

(if (and (equal (caar (car inp)) (m-not trigger))

(check-clock-setup-or-hold

(car inp) (car (holds mod))))

(compute-state mod (strip-events inp time) trigger)

(kill-state mod)))

(if (and (equal (cdar (car inp)) trigger)

(not (check-data-holds

(cdr inp) (cdar (car inp))

time (cdr (holds mod)))))

(kill-state mod)

(compute-state mod (strip-events inp time) trigger)))))

((lessp (count inp))))

(eztLble 8_rip-ovon_s)

(enable last-time)

(defn sequential-state (mod inp)

(case (triter mod)
(positive-edge (compute-state mod inp 't))

(negative-edge (compute-state mod inp 'f))

(otherwise (compute-stats mod inp 't))))

(dofn aoquen_ial-step (mod inp outp time)

(pos_-evonts

ou_p

(ovals 'list

43

(outputs mod)

(pairlist (locals mod)

(sequential-state mod (packet-history inp time))))

time

(modes mod)

(delays mod)))

(defn behavioral-step (mod imp outp time)

(case (type nod)

(combinational (combinational-step mod imp outp time))

(sequential (sequential-step mod imp outp time))

(o_herwise f)))

;; STRUCTURAL MODULES

;;Structural modules are built recursively out of submodules. A

;;structural module has _ components:

;(dean inputs (mod)

; ;a list o_ lita_oms

; (cadrmod))

;(dofn outputs (mod)

; ;a list of litatoms

; (caddr mod))

(darn submodules (mod)

;a list of modules

(cadddr mod))

(disable 8ubmodules)

(darn subinputs (mod)

;a llat of lists of litatoms

(caddddr sod))

(disable eubinputs)

(darn suboutputs (mod)

;a llet of lists o_ litatoms

(cadddddr nod))

44

(disable 8uboutputJ)

(dofn unionl (1)

(i_ (lietp l)
(union (car i) (unlonl (cdr i)))

()))

(defn lignale (mod)

(unlonl (cone (inputs mod) (suboutputs mod))))

(dofn lookup (key keys list)

(if (listp keys)

(if (equal key (car keys))

(car list)

(lookup key (cdr keys) (cdr list)))

f))

(defn find-list (key lists)

(if (lietp lists)

(if (member key (car lists))

(car lists)

(find-list key (cdr lists)))

f))

(defn find-outputs (out mod)

(find-list out (suboutputs mod)))

(defn lookup-list (key keys list)

(if (lietp keys)

(if (member key (car keys))

(car list)

(lookup-list key (cdr keys) (cdr list)))

f))

(defn find-eubmodule (out mod)

(lookup-list out (suboutputs mod) (submodulee mod)))

(defn find-inputs (out mod)

(lookup-list out (suboutputs mod) (subinputs mod)))

(defn find-delay (out mod)

(lookup out (find-outputs out mod) (delays (find-submodule out mod))))

45

1
w

(defn find-mode (out mod)

(lookup out (find-outputs out mod) Cmodes (find-submodule out sod))))

;;The following macro is given for convenience in defining structural

;;modules:

(defmacro defcircuit (name inputs outputs krest occurrences)

'(defn ,name ()

'(structural ,a.inputs ,_,outputs

,,'(list ,@(mapcar #'first occurrences))

,',(mapcar #'second occurrences)

,',(mapcar #'third occurrences))))

;;As an example, we build a D-flip-flop out of nand gates:

(defcircuit d-with-nands

(elk d) ;inputs

(q qn) ;outputs

((nand) (b2 bl) (al))

((hand) (al elk) (bl))

((handS) (bl elk b2) (a2))

((hand) (a2 d) (b2))

CCnand) (bl qn) (q))

((nand) (q a2) (qn)))

;;We define two predicates that must be satisfied by any structural

;;module, The first of these, SYNTAX-OK, checks that all list have

;;appropriate lengths, etc.:

Cdefn match-inputs (subins subs)

(if (listp subs)

(and (liatp subins)

(equal (length (car subins)) (number-of-inputs (car subs)))

(match-inputs (cdr subins) (cdr subs)))

t))

(defn ma_ch-outputs (subouts subs)

(if (listp mubs)

(and (equal (length (car subouts)) (number-of-outputs (car subs)))

(match-outputs (cdr subouts) (cdr subs)))

(defn appears (x i)

(if (lis_p I)

46

(or Cmember x (car i))

(appears x (cdr i)))

(darn all-appear (i m)

(if (llatp i)

(and (appears (car i) m)

(all-appear (cdr I) m))

t))

(defn lists-all-appear (is m)

(if (listp Is)

(and (all-appear (car Is) m)

(lists-all-appear (cdr is) m))

t))

(defn none-appear (I m)

(if (listp i)

(and (not (appears (car i) m))

(none-appear (cdr i) n))

t))

(defn distinct-symbols (I)

(if (listp l)
(and (litatom (car I))

(not (member (car i) (cdr i)))

(distinct-symbols (cdr i)))

t))

(defn all-distinct-symbols (is)

(if (listp is)

(and (distinct-symbols (car Is))

(none-appear (car is) (cdr is))

Call-distinct-symbols (cdr Is)))

t))

(defn syntax-ok (mod)

(and (equal (length (subinputs mod)) (length (submodules mod)))

(match-inputs (subinputs mod) (submodules mod))

(equal (length (suboutputs mod)) (length (submodules mod)))

(match-outputs (suboutputs mod) (submodules mod))

(all-appear (outputs mod) (suboutputs mod))

(lists-all-appear

(subinputs mod) (cons (inputs mod) (suboutputs mod)))

47

(all-distinct-symbols (cone (inputs mod) (suboutputs mod)))))

;;The other predicate that must be satisfied by any structural module,

;;DELTA-ACYCLIC, checks for cyclic O-delay paths. It is defined in

;;terms of an important auxiliary function, DLEVEL$:

(dean delete (x 1)
(i_ Clietp I)

(if (equal x (car i))

(cdr I)

(cone (car 1) (delete x (ceLt 1))))
1))

(defn subbaEp (I m)

(if (lletp i)

(and (member (car i) m)

(subbagp (cdr 1) (delete (car 1) m)))

t))

(defn subsetp (i m)

Ci_ (liatp i)
(and (member (car i) m)

(eubeetp (cdr i) m))

t))

(prove-leuma lensCh-delete (re,rite)

(implies (member x i)

(equal (length (delete x I))

(sub1 (length 1)))))

(prove-lemma member-delete (rewri=e)

(implies (and (member x I)

(not (equal x y)))

(member x (delete y i))))

(prove-leseaa lesap-length-subbagp ()

(implies (and (subbagp 1 m)

(member z m)

(not (member x 1)))

(lessp (length 1) (length m))))

(prove-lee_na subeetp-delete (rewrite)

(implies (and (aubeetp I m)

(not (member x 1)))

48

(subeetp 1 (delete x m))))

(prove-le.-sa subaetp-subbagp (rewrite)

(implies (and (distinct-symbols i)

(subsetp I m))

(eubbagp I m))

((induct (subba_ I m))))

(prove-le_.a lessp-length-subset (rewrite)

(implies (and (subsetp I m)

(distinct-symbols i)

(member x m)

(not (member x 1)11

(lessp (length i) (length m)))

((use (lessp-length-subbagp))))

(defn fmax (x y)

;the maximum of x and y, with F treated as infinite

(if (and x y)

(max x 7)

f))

(defn select-deltas (delays env)

(if (llstp delays)

(if (zarop (min-delay (car delays)))

(cons (car env) (select-deltas (cdr delays) (cdr env)))

(select-deltas (cdr delays) (cdr env)))

()))

(prove-lemma lessp-count-submodules-mod (rewrite)

(implies (structuralp mad)

(equal (lessp (count (submodules mad)) (count mad)) t))

((enable submodules type)))

;;Suppose 11 in a signal of a structural module HOD, F_V is a list of

;;length (NUMBER-OF-OUTPUTS MOD), and BAD is a list of signals of MOD.

;;Assume that for each i < (NUMBER-OF-OUTPUTS MOD), the ith member of

;;ENV is the length of the longest O-delay path starting at the ith

;;member of (OUTPUTS MOD) and leading outward. Assume further that

;;there is an infinite (i.e., cyclic) O-delay path starting at each BAD

;;ai_al. Then (DLEVEL$ 0 IN MOD ENV BAD) is the leng%h of the lo_ge_t

;;O-delay path starting at IN:

(dofn lookup-all (x I m)

49

(if (listp i)

(if (equal x (car i))

(cons (car m) (lookup-all x (cdr I) (cdr m)))

(lookup-all x (cdr 1) (cdr m)))
m))

(dsfn lookup-inputs (x 1 m)

(if (listp i)

(cons (lookup-all x (car I) (inputs (car m)))

(lookup-inputs x (cdr I) (cdr m)))

m))

(dsfn fmaxl (i)

(if (listp I)

(fmax (car i) (fmaxl (cdr i)))

o))

(defn fmaxll (I)

(if (listp i)

(fmax (fmaxl (car i))

o))
(fmaxll (cdr i)))

(defn faddl (n)

(if n (addl n) f))

(defn faddll (I)

(if (liatp i)

(cons (faddl (car i)) (faddll (cdr I)))

()))

(defn dlevel$ (mode in mod env bad)

(case mode

(0 (if (structuralp mod)
(if (and (not (member in bad))

(equal (length (suboutputs mod))

(length (submodules mod)))

(member in (signals mod))

(distinct-symbols bad)

(subsetp bad (signals mod)))

(fmaxll (cons (lookup-all in (outputs mod) env)

(dlevel$

3

(lookup-inputs in

(subinputs mod)

5O

(submodules mod))

(submodules mod)

(dlevel$ 2 (suboutputs mod) mod env

(cons in bad))

())))

(fmaxl (faddll (select-deltas (delays mod) env)))))

(1 (if (lisZp in)

(cons (dlevel$ 0 (car in) mod env bad)

(dlevel$ 1 (cdr in) mod env bad))

(3))
C2 Ci_ (listp in)

(cons (dlevel$ 1 (car in) mod env bad)

(dlevel$ 2 (cdr in) mod env bad))

()))
(3 (if (listp mod)

(cons (dlevel$ I (car in) (car rood) (car env) bad)

(dlevei$ 3 (cdr in) (cdr rood) (cdr env) bad))

()3)

(other.is. f))

((ord-leesp (lex (list (count mod)

(difference (length (signals mod)) (length bad))

(count in))))))

(defn dslta-acyclic (mod)

;ds_s_:_es shether there is any cyclic O-delay path within HOD

(fmaxll (dlsvel$ 2

(suboutputs mod)

mod

(ncopies (number-of-outputs mod) O)

())))

(dsfn modulep$ (flag mod)

(if (oqual fla 8 'list)

(if (listp mod)

(and (modulep$ t (car mod))

(modulep$ 'list (cdr mod)))

=)

(case (¢ype sod)

(struct_tral

(and (syntax-ok mod)

(dslta-acyclic mod)

(modulep$ 'list (submodules mod))))

(combinational

51

(and (equal

(equal

(sequent ial

(and (equal

(equal

(equal

(equal

(length (delays mod)) (length (outputs mod)))

(length (modes mod)) (length (outputs mod)))))

(length (delays mod)) (length (outputs mod)))

(length (modes mod)) (length (outputs mod)))

(length (state mod)) (length (locals mod)))

(length (holds mod)) (length (inputs mod)))

(equal (length (setups mod)) (length (inputs mod)))))

(otherwise f))))

(defn modulep (mod)

(modulep$ t mod))

;;We shall define a step function for structural modules. Instead

;;of an output packet, the object on which this function operates

;;(its third argument and its value) is an output "bundle", which

;;consists of a packet corresponding to each behavioral component.

;;First, we extract from a wave bundle the packet corresponding

;;to a module's output signals:

(defn select-gave (key signals packets)

(if (listp packets)

(if (member key (car signals))

(lookup key (car signals) (car packets))

(select-gave key (cdr signals) (cdr packets)))

f))

(dean

(if

()

select-packet (keys signals packets)

(listp keys)

(cons (select-wave (car keys) signals packets)

(select-packet (cdr keys) signals packets))

))

(defn

(if
output-packetS (flag bundle mod)

(equal flag 'list)

(if (listp mod)

(cons (output-packetS t (car bundle) (car mod))

(output-packetS flag (cdr bundle) (cdr mod)))

())

(if (structuralp mod)

(select-packet

(outputs mod)

(suboutputs mod)

52

.! _ ..

(output-packetS 'list bundle (submodules mod)))

bundle)))

(dofn output-packet (bundle modulo)

(output-packetS t. bundle modulo))

; ;|ext, ee extract, from an input packet and a bundle, a list of

; ;the i_put packets to a moduloJs submodules:

(defn input-packet (ins inpacket bundle mod)

(select-packet

in|

(cons (inputs mod) (suboutputs mod))

(cons inpacket (output-packetS Jlist bundle (submodules mod)))))

(defn input-packets (ins inpacket bundle mod)

(if (listp ins)

(cons (input-packet (car ins) inpacket bundle mod)

(input-packets (cdr ins) inpacket bundle mod))

()))

(defn eubinput-packets (inpackst bundle mod)

(input-packets (subinputs mod) inpacket bundle sod))

(defn steps (flag mod inpacket bundle time)

(if (equal flag 'list)

(if (listp mod)

(cons (steps t (car mod) (car inpacket) (car bundle) time)

(steps 'list (cdr mod) (cdr inpacket) (cdr bundle) time))

())

(if (structuralp mod)

(stops 'list

(submodules mod)

(subinput-packets inpacket bundle mod)

bundle

time)

(if (eome-new-value-p inpacket time)

(behavioral-step mod inpackst bundle time)

bu_dls))))

(defn step (mod inpacket bundle tame)

(mtep$ t mod inpacket bundle time))

53

;; SIMULATION

;;£ simulation of a module is the computation of an output packet

;;produced in response to a given input packer. We _ould like to allow

;;both packets to be infinite. No_e that even _hen the input packet is

;;finite, the output (of a structural module) may never stabilize.

;;Since o_r implementation does not allow the explicit representation ol

;;infinite .aveforms, our simulator takes a time argumen_ (in addition

;;to a module and input packet). The value retdrned is a =ave packet

;;representing the output produced up to that time.

;;The simulator is defined recursively in terms of STEP. In order to

;;gllarantee termination of the recursion, all events are assumed to be

;;scheduled at times whose 2nd (delta) components are uniformly bounded

;;by some number D, _hich is passed to the simulator as a 4th argument.

;;The valid time that immediately follows a given time is computed as

;;follows:

(dora Zinc (time d)

(if (lessp (cdr time) d)

(cons (car time) (add1 (cdr time)))

(cons (addl (car time)) 0)))

;;We define a function that steps recursively:

(defn walk (mod inpacket bundle start stop d)

(if (Zlessp start stop)

(_alk mod

inpacket

(step mod inpacket bundle (tint start d))

(tint start d)

stop

d)

bundle)

((ord-lessp (cons (addl (difference (addl (car stop)) (car start)))

(difference d (cdr start))))))

;;We make no assumptions about the waveforms initially associated with any

;;of the signals produced by MOD. Thus, we take each of these to be the

;;waveform whose value is everywhere uxtkno_n:

(defn null-bundleS (flag mod)

54

(if (equal flag Jlist)

(if (listp mod)

(cons (null-bundleS t (car mod))

(null-bundleS 'list (cdr mod)))

())

(if (structuralp mod)

(null-bundleS 'list (submodules mod))

(ncopies (number-of-outputs mod) (list (cons 'x (zero-time)))))))

(defn initialize (mod inp)

(step mod inp (null-bundleS t mod) (zero-time)))

(defn sim (mod inp tl d)

(packet-history

(output-packet

(walk mod inp {initialize mod inp) {zero-time) tl d) mod)

tl))

;; DELTA CONSTRAINTS

;;We require that no event is ever scheduled for a time gith delta

;;component exceeding the D argument of WALK. This imposes a lo_er

;;bound on D. namely, the maximum of the dlevels of the signals of MOD

;;and its submodules:

(defn dmin$ (flag mod env)

(if (equal flag *list)

(if (listp mod)

(max (dmin$ t (car mod) (car env))

(dmin$ 'list (cdr mod) (cdr env)))

0)

(if (structuralp mod)

(max (fmaxll (dlevel$ 2

(cons (inputs mod) (suboutputs mod))

mod env ()))

(dmin$ 'list

(submodules mod)

(dlevel$ 2 (suboutputs mod) mod env ())))

(max (fmaxl env)

(fmaxl (faddll (select-deltas (delays mod) env)))))))

55

(defn dmin (mod env)

(dmin$ t mod env))

;;Restrictions are similarly imposed on the 2nd and 3rd arguments of

;;WALK:

(deln bounded-delta-p (x d)

(leq (car x) d))

(defn bottnded-waveform-p (w d)

(if (listp w)

(if (listp (cdr _))

(and (bounded-_avsform-p (cdr w) d)

(timep (cdar _))

(bounded-delta-p (cdar w) d)

(tlessp (cdadr w) (cdar w))

(not (equal (caadr w) (caar w))))

(equal (cdar w5 (zero-time55)

f))

(defn bounded-packet-p (p dlist)

(if (listp dlist)

(and (lis%p p5

(bounded-_aveform-p (car p) (car dlist))

(bounded-packet-p (cdr p) (cdr dlist)))

(nlistp p)))

(deln differences (d 1)

(if (listp I)

(cons (difference d (car 1)5

(differences d (cdr 151)

()))

(defn inpacketp (p mod env d5

(and (leq (dmin mod env5 d)

(bounded-packet-p

p (differences d (dlevel$ I (inputs mod) mod env ())))))

(defn bundlep$ (flag bun mod env d)

(if (equal flag 'list)

(if (listp mod)

(and (bundlep$ t (car bun) (car mod) (car env) d)

(bundlep$ 'list (cdr bun) (cdr mod5 (cdr env) d))

(nlistp bun))

56

v

(if (8tructuralp mod)

(bundlep$ 'list

bun

(submodules mod)

(dlevel$ 2 (suboutputs mod) mod env ())

d)

(bounded-packet-p bun (differences denv)))))

(dofn bundlep (bun rood env d)

(bundlep$ t bun mod env d))

A FAST SIMULATOR

(dofn update-state (mod inp state time tritest)

(if (equal time (zero-time))

(kill-state mod)

(_f (ne.-value-p (car inp) time)

(if (equal (caar (car inp)) tri_er)

(if (and (check-clock-setup-or-hold

(car inp) (car (setups mod)))

(check-data-setups

(cdr inp) time (cdr (setups mod)))

(check-period (car inp) (period mod)))

(next-state state (last-values (cdr inp)) mod)

(kill-state mod))

(if (and (equal (caar (car inp)) (m-not tri_er))

(check-clock-setup-or-hold

(car inp) (car (holds mod))))

state

(kill-state mod)))

(if (and (equal (cdar (car inp)) tri_er)

(not (check-data-holds

(cdr inp) (cdar (car inp))

time (cdr (holds mod)))))

(kill-state mod)

state)))

((leaap (count inp))))

(defn fast-sequential-step (mod inp bundle time)

(lot ((state (update-state

mod

57

(packet-history inp time)

(cdr bundl e)

tires

(if (equal (trigger mod) 'negative-edge) 'f 't))))

(cons (post-events

(car bundle)

(eval$ 'list (outputs mod) (pairlist (locals mod) state))

time

(modes sod)

(delays mod))

state)))

(defn fast-behavioral-step (mod inp bundle time)

(case (t_e mod)
(combinational (combinational-step mod inp bundle time))

(sequential (fast-sequential-step mod inp bundle time))

(other, ise f)))

(defn fast-output-packetS (flag bundle mod)

(if (equal flag 'list)

(if (listp mod) - -

(cons (fast-output-packetS t (car bundle) (car mod))

(fast-output-packetS flag (cdr bundle) (cdr mod)))

())

(if (structuralp mod)

(select-packet

(outputs mod)

(suboutputs mod)

(fast-output-packetS Jlis% bundle (submodules mod)))

(if (sequentialp mod)

(car bundle)

bundle))))

(defn fast-output-packet (bundle module)

(fast-output-packetS t bundle module))

;;|ext. ve extract, from an input packet and a bundle, a list of

;;the input packets to a module's submodules:

(dofn fast-input-packet (ins inpacket bundle mod)

(select-packet

ins

(cons (inputs mod) (suboutputs mod))

(cons inpacket (fast-output-packetS 'list bundle (submodules mod)))))

58

• w

(defn fast-input-packets (ins inpacket bundle mod)

(if (llstp ins)

(cons (fast-input-packet (car ins) inpacket bundle mod)

(fast-input-packets (¢dr ins) inpacket bundle mod))
()))

(defn faat-subinput-packets (inpacket bundle mod)

(fast-input-packets (subinputs mod) inpacket bundle mod))

(defn fast-stepS (flag mod inpacket bundle time)

(if (equal flag 'list)

(if (listp mod)

(cons (fast-stepS t (car mod) (car inpacket) (car bundle) time)

(fast-stepS

'list (¢dr mod) (cdr inpacket) (cdr bundle) time))
())

(if (atructuralp mod)

(fast-stepS 'list

(submodules mod)

(fast-subinput-packets inpacket bundle mod)

bundle

time)

(if (soms-new-value-p inpacket time)

(fast-behavioral-step mod inpacket bundle time)

bundle))))

(defn fast-step (mod inpacket bundle time)

(fast-stepS t mod inpacket bundle time))

(defn next-save-event (wave tO)

(if (listp wave)

(if (tlsesp tO (cdar wave))

(if (tlosep tO (cdadr wavo))

(next-wave-event (cdr wave) tO)

(cdar wave))

f)
f))

(defn ftmin (tl t2)

(if tl

(if (and t2 (tlessp t2 tl)) t2 tl)

t2))

59

(defn next-packet-event (p tO)

(it (listpp)

(ftmin (next-,ave-event (car p) tO)

(next-packet-event (cdrp) tO))

f))

(defn next-bundle-eventS (flag bun mod tO)

(it (equal flag 'list)

(if (listp mod)

(ftmin (next-bundle-eventS t (car bun) (car mod) tO)

(next-bundle-eventS _list (cdr bun) (cdr mod) tO))

f)

(case (type mod)

(structural (next-bundle-eventS 'list bun (submodules mod) tO))

(combinational (next-packet-event bun tO))

(sequential (next-packet-event (car bun) tO))

(otherwise f))))

(defn next-event (inp fbun mod tO)

(ftmin (next-packet-event inp tO)

(next-bundle-eventS t fbun mod tO)))

(prove-lemma tgreaterp-next-wave-event (rewrite)

(implies (next-wave-event w tO)

(tlessp tO (next-gave-event w tO)))

((disable tlessp)))

(prove-lemma tgreaterp-next-packet-event (rewrite)

(implies (next-packet-event p tO)

(tlessp tO (next-packet-event p tO)))

((disable tlessp)))

(prove-lemma tgreaterp-next-bundle-event (rewrite)

(implies (next-bundle-eventS flag bun mod tO)

(tlessp tO (next-bundle-eventS flag bun mod tO)))

((disable tlessp)))

(prove-lemma tgreaterp-next-event (rewrite)

(implies _" inp bun mod(next-event tO)

(_lessp tO (next-event inp bun mod tO)))

((disable tlessp)))

(prove-lemma fast-walk-lemma (re_rite)

(implies (and (tleesp tO tnext)

6O

W

(_leq _nex_ tl)

(bounded-delta-p _next d))

(Iox-lessp (lis_ (difference (addl (car tl)) (car tnexz))

(difference d (cdr rnexZ)))

(lis¢ (difference (addl (car Zl)) (car tO))

(difference d (cdr tO))))))

(dlsabls _lossp)

(disable next-event)

(disable lex-lessp)

(disable difference)

(defn fasZ-ealk (mod inpacket fbundle start stop d)

(let ((tnext (next-event inpacke_ fbundle mod start)))

(if Znexz

(if (boundsd-delta-p tnex_ d)

(if (Zlessp seep znexz)

fbundle

(fasZ-walk mod

inpacket

(fast-step mod inpacke_ fbundle tnext)

tnext

stop

d))

f)

fbundle))

((ord-lessp (lex (list (difference (addl (car stop)) (car starZ))

(difference d (cdr start)))))))

(auablo tlomsp)

(enable next-event)

(Luable lex-lessp)
/

(enable difference)

(dofn null-fbundle$ (flag mod)

(if (equal flag 'list)

(if (listp mod)

(cons (null-fbundle$ t (car mod))

61

(null-fbundle$ 'lisZ (cdx mod)))

())

(if (structuralp mod)

(_ull-fbundle$ 'list (submodules mod))

(if (combi_ationalp mod)

(ncopiss (nttmber-of-o_tp_ts mod) (list (cons 'x (zero-time))))

(cons (ncopies (number-of-outputs mod)

(list (cons 'z (z,ro-tim,))))

(kill-state mod))))))

(defn fasE-initialize (mod inp)

(fast-step mod inp (null-fbundle$ t mod) (zero-time)))

(defn extract-bumdle$ (flag fbun mod)

(iX (equal flag 'list)

(iX (lisZp mod)

(cons (,xtracZ-bundle$ t (car fbun) (car mod))

(extract-bundleS 'list (cdr fbu/1) (cdr mod)))

())

(iX (structuralp mod)

(extract-bundleS 'list fbun (submodules mod))

(if (combinazionalp mod)

fbun

(car fb_m)))))

(defn extract-bundle (fbun mod)

(extract-bundleS t fbun mod))

(defn fast-sim (mod inp tl d)

(packet-history

(output-packet

(extracZ-bundle

(fast-walk mod inp (fast-initialize mod inp) (zero-time) tl d)

sod)
mod)

tl))

FAST-DLEVEL$

(dsfn pushl (lis_ stack)

(if (lis_p list)

62

J

(cons (cone (car list) stack)

(puehl (cdr list) stack))

(3))

(dofn good-lis_ (mod bad)

(if (limtp mod)

(cons (difference (length (signals (car mod))) (length (car bad)))

(good-list (cdr mod) (cdr bad)))

())3

(defn struck-depthS (flag mod)

(if (equal flag 'list)

(if (lis_p mod)

(max (struct-depth$ t (car mod))

(struct-depth$ 'list (cdr mod)))

13
(if (etructuralp mod)

(add1 (struct-depth$ 'list (submodules mod)))

1333

(defn struct-depth (mod)

(struct-depth$ t mod))

(defn zero-pad (i n)

(if (leesp n (length i))

(zero-pad (cdr i) n)

(if (lessp (length 1) n)

(cons 0 (zero-pad 1 (subl n)))

1))

((leeep (plus (count 1) n))))

(prove-lem=a length-zero-pad (rewrite)

(equal (length (zero-pad 1 n)) (fix n)))

(defn lax-max (x y)

(if (lax-lessp x y) y x))

(defn reverse (x)

(if (listp x)

(append (reverse (cdr x)) (list (car x)))

()33

(defn good-measure-1 (in mod bad n)

(reverme (append (list (count in) (count mod))

63

(zero-pad (good-list mod bad) n))))

(defn good-measure-2 (mode in mod bad n)

(if (equal mode 3)

(if (listp mod)

(lax-max (good-measure-1 (car in) (car mod) bad n)

(good-measure-2 3 (cdr in) (cdr mod) bad n))

(ncopie. (plus 2 n) 0))

(good-measure-I in mod bad n)))

(defn good-measure (mode in mod bad n)

(if (equal mode 3)

(lax (append (good-measure-2 mode in mod bad n) (list (count mod))))

(lex (append (good-measure-2 mode in mod bad n) (list 0)))))

(prove-lemma length-reverse {rewrite)

(equal (length (reverse i)) (length i)))

(defn tailp (s 1 k)

(ii (zerop k)

(equal s I)

(tailp s (cdr i) (subl k))))

(prove-lemma lex-lessp-reverse ()

(implies (and (lex-lessp (reverse gl) (reverse g2))

(tailp gl ii k)

(tailp g2 12 k))

(lex-lessp (reverse 11) (reverse 12))))

(prove-lemma lex-lessp-append (rewrite)

(implies (lessp a b)

(lex-lessp (append 1 (cons a ()))

(append 1 (cons b ()))))

((ind_ct (length i))))

(prove-lemma lex-lessp-reverse-good-list {rewrite)

(implies (and (listp mod)

(equal (type (car mod)) 'structural)

(not (member in (car bad)))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(lex-lessp

(reverse

64

,qr

i

(good-list

mod (cons (cone in (car bad)) (cdr bad))))

(reverse (good-list mod bad)))))

(prove-leman tailp-zero-pad ()

(implies (leq (length g) n)

(tailp g (zero-pad g n) (difference n (length g)))))

(provo-lenma tailp-cdr ()

(_pliee (and (tailp g 1 k) (listp g))

(tailp (cdr g) 1 (addl k))))

(provo-lemma length-good-list (rewrite)

(equal (length (good-list mod bad)) (length mod)))

(prove-lem_a difference-subl (rewrite)

(equal (difference (subl x) y)

(subl (difference x y))))

(prove-leman lex-lessp-reverse-zero-pad (rewrite)

(implies (and (lietp mod)

(lessp (length mod) n)

(equal (type (car mod)) 'structural)

(not (member in (car bad)))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(eubsetp (car bad) (signals (car mod))))

(lex-lessp

(reverse

(zero-pad (good-list (cons sub mod)

(cons ()
(cons (cons in (car bad))

(cdr bad))))

n))

(reverse (zero-pad (good-list mod bad) n))))

((use (tailp-zero-pad

(g (good-list (cons sub mod)

(cone () (cone (cons in (car bad))

(cdr bad))))))

(tailp-cdr

(g (good-list

(cons sub mod)

(cons () (cons (cone in (car bad)) (cdr bad)))))

(i (zero-pad

65

w

(good-list

(cons sub mod)

(cons () (cons (cons in (car bad)) (cdr bad))))

n))

(k (sub1 (difference n (length mod)))))

(lex-lessp-reverse

(gl (good-list mod (cons (cons in (car bad)) (cdr bad))))

(11 (zero-pad

(good-list

(cons sub mod)

(cons () (cons (cons in (car bad)) (cdr bad))))

n))

(k (difference n (length mod)))

(g2 (good-list mod bad))

(12 (zero-pad (good-list mod bad) n)))

(tailp-zero-pad (g (good-list mod bad))))

(disable zero-pad signals tailp)))

(prove-lemma ord-lessp-good-measure-O (rewrite)

(implies (and (listp mod)

(lessp (length mod) n)

(equal (type (car mod)) 'structural)

(not (member in (car bad)))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(lex-lessp

(good-measure-i

ins

(cons sub mod)

(cons () (cons (cons in (car bad)) (cdr bad))) n)

(good-measure-2 0 in mod bad n)))

((use (lex-lessp-reverse

(gl (zero-pad

(good-lis_

(cons sub mod)

(cons () (cons (cons in (car bad)) (cdr bad))))

n))

(11 (append (list (count ins) (count (cons sub mod)))

(zero-pad

(good-list

(cons sub mod)

(cons () (cons (cons in (car bad))

(cUr bad))))

66

,F

n)))

(g2 (zero-pad (good-list mod bad) n))

(12 (append (list (count in) (count mod))

(zero-pad (good-list mod bad) n)))

(k 2)))

(disable zero-pad signals good-list reverse)))

(provs-le_aa good-measure-2-open-1 (rewrite)

(implies (listp mod)

(equal (good-measure-2 3 in mod bad n)

(lex-max

(good-measure-I (car in) (car mod) bad n)

(good-measure-2 3 (cdr in) (cdr mod) bad n)))))

(disable good-measure-2-open-1)

(prove-leauaa good-measure-2-open-2 (rewrite)

(implies (nlistp mod)

(equal (good-measure-2 3 in mod bad n)

(ncopies (plus 2 n) 0))))

(disable good-msasurs-2-open-2)

(provs-lea_aa not-ord-lessp-O (rewrite)

(implies (equal (length x) (fix k))

(not (lex-lessp z (ncopies k 0)))))

(prove-lea.as lex-lessp-append-al-a2 ()

(impllss (and (not (lex-lessp al a2))

(lex-lessp b2 bl)

(equal (length al) (length a2)))

(lex-lessp (append a2 b2) (append al bl))))

(prove-luuaa length-ncopies (rewrite)

(equal (length (ncopies n x)) (fix n)))

(prove-lemaa not-zerop-count-cons ()

(not (zerop (count (cons (car mod) (cdr mod))))))

(prove-lunRa count-listp ()

(laplles (listp mod) (not (zerop (count mod))))

((USe (not-zorop-count-cons))

(disable count-cons)))

67

(prove-lemma ncopies-plus-n-2 ()

(equal (append (ncopies n O) '(0 0))

(ncopies (plus n 2) 0)))

(prove-lemma assoc-plus () :

(equal (plus x y) (plus y x)))

(prove-le--a ncoples-plus-2-n ()

(equal (append (ncopies n O) '(0 0))

(ncopies (plus 2 n) 0))

((use (ncopies-plus-n-2)

(assoc-plus (x 2) (y n)))))

(prove-le...a append-append (rewrite)

(equal (append (append a b) ¢)

(append a (append b ¢))))

(disable append-append)

(prove-le_aa lex-leq-O (rewrite)

(implies (listp mod)

(lex-lessp (ncopies (plus 2 n) O)

(good-measure-2 0 in mod bad n)))

((use (iox-leesp-append-al-a2

(al (reverse (zero-pad (good-list mod bad) n)))

(a2 (ncopiee n 0))

(bl (list (count mod) (count in)))

(b2 (list 0 0)))

(ncoples-plus-2-n)

(count-listp))

(enable append-append)))

(prove-le...a lex-lessp-good-measure-3 (rewrite)

(implies (and (listp mod)

(lessp (length mod) n)

(equal (_ype (car mod)) 'structural)

(not (member in (car bad)))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(lex-lessp

(good-measure-2

3

ins

68

i

(pushl subs mod)

(cons (3 (cons (cons in (car bad3) (cdr bad)))

n)

(good-measure-2 0 in mod bad n)))

((disable good-measure-2 good-measure-1 signals ord-lessp count-cone)

(enable good-measurs-2-open-1 good-measure-2-open-2)

(induct (good-list subs ins))))

(provo-loma lox-lessp-append-2 ()

(Inpliea (lex-lossp al a2)

(lex-lessp (append al bl) (append a2 b2))))

(prove-le.-.a length-append (rewrite)

(equal (length (append a b))

(plus (length a) (length b))))

(provo-le--.a length-good-measure-2 (rewrite)

(equal (length (good-measure-2 mode in mod bad n))

(plus n 2)))

(prove-luma ord-lessp-good-measure-3 (revrite)

(implies (and (listp mod)

(lsssp (length mod) n)

(equal (type (car mod)) 'structural)

(not (member in (car bad)))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(ord-lessp

(good-measure

3

ins

(pushl subs mod)

(cons () (cons (cons in (car bad)) (cdr bad)))

n)

(good-measure 0 in mod bad n)))

((disable good-measure-2)

(USe (lex-lessp-append-2

(al (good-measure-2

3

ins

(pushl subs mod)

(cons () (cons (cons in (car bad)) (cdr bad))) n))

(a2 (good-measure-2 0 in mod bad n))

6g

(bl (list (coun_ (pushl subs rood))))

(b2 (list o))))))

(prove-lama not-lex-leeep-append (rewrite)

(implies (and (not (lex-lesep al a2))

(not (lex-lessp bl b2))

(equal (length al) (length a2)))

(not (lex-lesep (append al bl) (append a2 b2)))))

(prove-lama zero-pad-cons-O ()

(implies (lesep (length g) n)

(equal (zero-pad g n)

(zero-pad (cons 0 g) n))))

(prove-le.-.a lex-leesp-lex-lessp-append (rewrite)

(implies (and (lex-lessp a b)

(equal (length c) (length d)))

(lex-lessp (append a c) (append b d))))

(prove-lemma not-lex-lessp-reverse-zero-pad ()

(implies (and (not (lex-lessp (reverse gl) (reverse g2)))

(equal (length gl) (length g2)))

(not (lex-lessp (reverse (zero-pad gl n))

(reverse (zero-pad g2 n))))))

(prove-lemma zero-pad-cdr (rewrite)

(implies (and (listp g)

(lessp n (length g)))

(equal (zero-pad (cdr g) n)

(zero-pad g n))))

(prove-lemma lex-leq-zero-pad-cdr 4)

(implies (listp g)

(not (lex-lessp (reverse (zero-pad g n))

(reverse (zero-pad (cdr g) n)))))

((use (not-lex-lessp-reverse-zero-pad

(gl g) (g2 (cons o (c_ g))))

(zero-pad-cons-O (g (cdr g))))))

(prove-le-.-a append-append-append (rewrite)

(equal (append (append (append a b) c) d)

(append a (append b (append ¢ d)))))

(disable append-append-append)

7O

"T

(prove-leema ord-lessp-good-measure-1 (rewrite)

(implies (listp mod)

(ord-leesp (good-measure 1 ins (cdr mod) (cdr bad) n)

(good-measure 0 in mod bad n)))

((use (lex-leq-zero-pad-cdr (g (good-list mod bad)))

(lex-leeep-append-al-a2

(el (reverse (zero-pad (good-list mod bad) n)))

(a2 (reverse (zero-pad (cdr (good-list mod bad)) n)))
(bl (list (count mod) (coun_ in) 0))

(b2 (list (count (cdr mod)) (count ins) 0))))

(enable append-append-append)

(disable zero-pad signals)))

(prove-lema ord-lessp-good-measure-i (rewrite)

(implies (and (listp in)

(not (equal i 3))

(not (equal j 3)))

(ord-lessp (good-measure i (cdr in) mod bad n)

(good-measure j in mod bad n)))

((use (lex-lessp-append-al-a2

(el (reverse (cons (count mod)

(zero-pad (good-list mod bad) n))))

(a2 (reverse (cons (count mod)

(zero-pad (good-list mod bad) n))))
(bl (list (count in) 0))

(b2 (list (count (cdr in)) 0))))

(enable append-append)

(disable good-list)))

(prove-lemma ord-lesep-good-measure-i-car (rewrite)

(implies (and (lietp in)

(no_ (equal i 3))

(not (equal j 3)))

(ord-lessp (good-measure i (car in) mod bad n)

(good-measure j in mod bad n)))

((use (lex-lessp-append-al-a2

(el (reverse (cons (count mod)

(zero-pad (good-list mod bad) n))))

(a2 (reverse (cons (count mod)

(zero-pad (good-list mod bad) n))))

(bl (list (count in) 0))

(b2 (list (count (car in)) 0))))

(enable append-append)

71

(d/sable good-list)))

(prove-lenma ord-lessp-trans-1 (reerite)

(inplies (and (ord-lessp b c) (ord-lessp a b))

(ord-leesp a c)))

(prove-lseaa length-append-good-measure-2 ()

(equal (length (append (reverse (zero-pad (good-list x bad) n))

(cons (count z) (cons (count (car in)) '(o)))))
(len6th (append (good-nsasure-2 3 (cdr in) z bad n)

(list (add1 (plus (count x) (count z))))))))

(prove-lea_a lex-lessp-antisyaune_ry ()

(not (and (lex-leeep x y) (lez-leesp y x))))

(prove-leeuna not-lex-lessp-good-measure-2-3 ()

(implies (liatp mod)

(not (lex-lessp (good-measure-2 3 in mod bad n)

(good-measure-2 1 (car in) (car mod) bad n))))

((use (lex-lessp-antisymmetry

(x (good-measure-2 3 (cdr in) (cdr mod) bad n))

(y (good-measure-2 1 (car in) (car mod) bad n))))))

(prove-loua length-append-good-measure-1 (rewrite)

(equal (length (append (good-measure-1 (car in) (car mod) bad n)

'(o)))
(length (append (good-measure-2 3 in mod bad n)

(list (count mod))))))

(prove-lomma ord-lessp-good-Measure-l-3 (rewrite)

(implies (listp mod)

(ord-leesp (good-measure 1 (car in) (car mod) bad n)

(good-measure 3 in mod bad n)))

((use (Iox-lossp-append-al-a2

(el (good-measure-2 3 in mod bad n))

(a2 (good-measure-2 1 (car in) (car mod) bad n))

(bl (list (coun_ mod)))

(b2 ,Co)))
(not-lex-lessp-good-measure-2-3))

(disable good-measure-l)))

(prove-leeaa length-good-measure-I (rnrite)

(equal (length (good-measure-I in mod bad n))

(plus n 2)))

72

._

(prove-la_-.a ord-lessp-Eood-measure-3-3 (reerite)

(inpliu (listp mod)

(ord-lessp (good-measure 3 (cdr in) (cdr mod) bad n)

(good-measure 3 in mod bad n)))

((enable good-measure-2-open-1)

(use (lox-le88p-append-al-a2

(a2 (GOOD-MEASURE-2 3 (CDR IN) (CDR MOD) BAD N))

(el (good-measurs-I (car in) (car mod) bad n))

(b2 (list (count (¢dr mod))))

(bl (lia_ (count mod)))))

(dlaable good-measure-2 good-measure-l)))

(prove-lense ordp-good-measure (rewrite)

(ordinalp (good-measure mode in mod bad n)))

(disable good-measure)

(dofn fast-dlovel$ (mode in mod env bad n)

(case mode
(0 (i_ (listp mod)

(if (and (structuralp (car mod))

(lessp (length mod) n))

(if (and (not (member in (car bad)))

(equal (length (suboutputs (car mod)))

(length (submodules (car mod))))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(_maxll

(cons (if (listp (cdr mod))

(fast-dlevel$

I

(lookup-all

in (outputs (car mod)) (car env))
(cdr mod)

(cdr any)

(cdr bad)

n)
(lookup-all

in (outputs (car mod)) (car env)))

(fast-dlevel$

3

(lookup-inputs

73

in

(subinputs (car mod))

(submodules (car mod)))

(pushl (submodules (car mod)) mod)

(pushl (suboutputs (car mod)) env)

(cons ()

(cons (cons in (car bad)) (cdr bad)))
n)))

f)

(if (listp (cdr mod))

(fmaxl (faddll (fast-dlevel$ I

(select-deltas

(delays (car mod)) (car env))

(cdr mod)

(cdr env)

(cdr bad)

n)))

(fmaxl (faddll (select-deltas

(delays (car mod)) (car env))))))
f))

(I (if (listp in)

(cons (fast-dlevel$ 0 (car in) mod env bad n)

(fast-dlevel$ 1 (cdr in) mod env bad n))
()))

(2 (if (listp in)

(cons (fast-dlevel$ 1 (car in) mod any bad n)

(_ast-dlevel$ 2 (cdr in) mod env bad n))
()))

(3 (if (lis_p mod)

(cons (fast-dlevel$ 1 (car in) (car mod) (car env) bad n)

(fast-dlevel$ 3 (cdr in) (cdr mod) (cdr env) bad n))
()))

(otherwise f))

((ord-lessp (good-measure mode in mod bad n))))

(defn fas_-dslta-acyclic (mod)

;determines whether there is any cyclic O-delay path within NOD
(fnaxll (fas_-dlevel$ 2

(suboutputs mod)

(lis_ mod)

(lis_ (ncopies (number-of-outputs mod) 0))

(list ())

(struct-depth mod))))

74

;; MODULE REDUCTION

;;Fu_ctio_ that traverse structural Nodules will have an argument that

;;represents • bound on the length of the path to be traversed, in order

;;to establish termination. For this purpose, we define a function that

;;computes the length of the longest path through combinational

;;components of a structure:

(defn slevel$ (flag out mod bad)

;(SLEVEL$ T OUT MOD ()) is the length of the longest path through

;combinational components to OUT. MOD is assumed to be a flat

; structure.

(if (equal flag 'list)

(if (listp out)

(fmax (slevel$ t (car out) mod bad)

(slevel$ 'list (cdr out) mod bad))

0)

(if (or (member out (inputs mod))

(sequentialp (find-submodule out mod)))

0

(if (and (not (member out bad))

(distinct-symbols bad)

(member ou_ (signals mod))

(subsetp bad (signals mod)))

(faddl (sleve1$ 'list (find-inputs out mod) mod (cons out bad)))

f)))

((ord-lessp (lex (list (difference (length (signals mod)) (length bad))

(count out))))))

(defn sdepth (Nod)

;the maximum length of all paths through combinational components

(slevel$ 'list (signals mod) mod ()))

;;Output delays are computed by tracing backwards to sequential

;;outputs and global inputs:

(dofn max-delay-to-signalS (flag out mod d)

(if (oqual flag 'list)

(if (listp out)

(cons (max-delay-to-signalS t (car out) Nod d)

(max-delay-to-signalS Jlist (cdr out) Nod d))

75

(3)
(if (member our (inputs mod))

0

(if (sequen_ialp (find-submodule ous mod))

(max-delay (find-delay our mod))

(if (zerop d)
f

(plus (fmul (max-delay-to-signalS

'list (find-inputs ou¢ mod) mod (subl d)))

(max-delay (find-delay out mod)))))))

((ord-luep (let (list d (count out))))))

(defn fmln (x y)

(i_ z

(if y
(if (leesp x y)

x

y)
,)

y))

(defn fminl (I)

(if (lietp l)
(fmln (car I) (fminl (cdr i)))

f))

(defn mln-delay-to-signal$ (_lag out mod d)

(if (equal flag 'list)

(if (lisZp our)

(cone (min-delay-to-signal$ t (car out) mod d)

(min-delay-to-signal$ 'list (cdr our) mod d))

())

(if (member our (inputs mod))

0

(if (eeqnentialp (find-submodule out mod))

(mln-dslay (find-delay out mod))

(if (zerop d)

f

(plus (fminl (min-delay-zo-si_nal$

'list (find-inputs out mod) mod (subl d)))

(min-delay (find-delay out mod)))))))

((ord-leeep (let (list d (count ou_))))))

(defn collect-delays (mod d)

76

(pairlist (min-delay-to-siEnal$ 'list (outputs mod) mod d)

(max-delay-to-signalS 'list (outputs mod) mod d)))

;;The delay mode of an output is nondeterministic unless it is

;;generated directly by a sequential component, in which case it

;;inherits its mode from that component:

(defn collect-all-modes (outs mod)

(if (listp outs)

(cons (if (sequentialp (find-submodule (car outs) mod))

(find-mode (car outs) mod)

'nondeterministic)

(collect-all-modes (cdr outs) mod))

()33

(defn collect-modes (mod)

(collect-all-modes (outputs mod) mod))

w

;;Output forms are constructed by tracing back to locals and global

;inputs;

(dofn subst$ (flag vals vats form)

(if (oqual flag 'list)

(if (listp form)

(cons (subst$t vale vats (car form))

(subst$ 'list vals vars (cdr form)))

())
(if (member form vars)

(lookup form vars vale)

(if (nlistp form)

form

(if (equal (car form) _quote)

form

(cons (car form) (subst$ 'list vale vars (cdr form))))))))

(darn subst (vals vars form)

(subs_$ t vale vars form))

(dofn signal-formS (flag out mod d)

;If D is at Ioast the slovel of OUT. then (SIGNAL-FORMS T OUT MO_ D)

;is a_ oxpression for the signal OUT in terms of tho inputs of MOD and

;tho locals of its sequential components

77

(11 (equal flag ,list)

(if (llatp out)

(cons (signal-formS t (car out) mod d)

(signal-formS Jlist (cdr out) mod d))

())
(if (member out (inputs mod))

out

(if (sequentialp (find-submodule out mod))

(lookup out

(find-outputs out mod)

(outputs (find-submodule out mod)))

(if (zerop d)

f

(subet (signal-formS Jlist (find-inputs out mod) mod (sub1 d))

(inputs (find-submodule out mod))

(lookup out

(find-outputs out mod)

(outputs (find-submodule out mod))))))))

((ord-leesp (lex (list d (count out))))))

(defn signal-forms (out mod d)

(slgnal-formS _list out mod d))

(defn collect-outputs (mod d)

(eignal-foz_ne (outputs mod) mod d))

;;If a structure is acyclic and has only combinational components,

;;then it reduces to a combinational module:

(defn comb-reduce (mod)

(let ((d (sdepth mod)))

(if d
(list 'combinational

(inputs mod)

(collect-outputs mod d)

(collect-modes mod)

(collect-delays mod d))

f)))

;;The reduction of a sequential structure requires renaming of signals

;;and locale in order to ensure _hat the locals and inputs of the

;;ruulting module are distinct:

78

p

(prove-le=a ioesp-quotien_ (rewrite)

(i_pliom (leq 10 n)

(lessp (quotient n 10) n)))

(prove-le.-_a leeep-rsmainder (rewrite)

(impllu (leq 10 n)
(loeep (remainder n 10) n)))

(dofn numbor-codee (n)

(if (loup n 10)

(cons (plus n 48) O)

(append (number-codes (quotient n 10))
(number-codes (remainder n 10)))))

(dole append-number (a n)

(pack (append (unpack a) (cons 45 (number-codes n)))))

(dole append-number-in-list (1 n)

(if (lisrp I)

(cone (append-number (car i) n)

(append-number-in-list (cdr 1) n))
()))

(defn append-number-in-lists (i n)

(if (lis_p i)

Ccons (append'number-in'iist (:car 1) n)

(append-number-in-lists (cdr 1) n))

()))

(dole append-number-in-termS (flag term vars n)

(if (equal flag 'list)

(if (lis_p term)

(cons (append-number-in-termS t (car term) vats n)

(append-number-in-_erm$ 'list (cdr _erm) varsn))

())

(if (lletp term)
(if (equal (car term) 'quote)

te_

(cone (car term)
(append-number-in-termS 'list (cdr term) varsn)))

(if (member corm vars)

(append-number term n)
term))))

79

(darn append-numbers-in-module (mad n)

(cue (type mad)

(sequential

(llst 'sequential

(appand-number-in-list (inputs mad) n)

(app_d-numbor-in-zor._ 'lis_ (outputs mad) (locals nod) n)

(modes sod)
(de!ays mad)
(triter mad)

(appond-numbor-in-list (locals mad) n)

(append-number-in-toneS

'list (szate mad) (append (inputs mad) (locals nod)) n)

(period mad)
(setups mad)
(holds mad)))

(conbinational

(list ,¢oabina_ional

(append-number-in-list (inputs mad) n)
(append-number-in-termS 'list (outputs mad) (inputs nod) n)

(modes mad)

(delays mad)))
(othorviso f)))

(darn appond-numbers-in-submodulos (mods n)

(if (listp mods)
(cons (append-numbers-in-modulo (car mods) n)

(append-numbors-in-subaodules (¢dr mods) (addl n)))
C)))

(darn rsnams-s_ructure (mad)
(list 'structural

(append-number-in-list (inputs mad) (length (submodulas nod)))

(appond-number-in-lis_ (outputs mad) (length (submodules nod)))

(append-numbors-in-subnodules (submodulss mad) O)

(append-number-in-lists (subinpuZs mad) (length (subnodules nod)))

(appand-number-in-lists
(subou_pu_s mad) (length (submodules mad)))))

;;Setup and hold times of sequential submodules impose constraints on

;;_ho stability of the structure's signals:

(def_add-aax-dolays (delaTs 1)

(if (listp 1)

8O

i_

W

= !

(co=s (plus (max-delay (car delays)) (car 1))

(add-max-delays (¢dr delays) (cdr I)))

(3))

(defn compute-setupS (flag in submods subins subouts mod d)

;The period for ehich IN must remain stable prior to a triggering edge

;in order no_ to violate the setup time of any input to a sequential

;submodule is given by

;(COMPUTE-SETUPS

; T I! (SUBMODULES MOD) (SUBINPUTS NOD) (SUBOUTPUTS NOD) HOD D))

(if (equal flag 'list)

(if (listp in)

(cons (compute-setupS

t (car in) submods subins subouts mod d)

(compute-setupS

'list (cdr in) submods subins subouts mod d))

())

(if (listp submods)

(if (ssqusnZialp (car submods))

(fmax (fmaxl (lookup-all in (car subins)

(setups (car submods))))

(compute-setupS

t in (cdr submods) (cdr subins) (cdr subouts) mod d))

(if (member in (car subins))

(if (zerop d)

f

(fmax (fmaxl (add-max-delays

(delays (car submods))

(compute-setupS 'list

(car subouts)

(submodules mod)

(subinputs mod)

(suboutputs mod)

mod

(subl d))))

(compute-setupS z in (cdr submods) (cdr subins)

(cdr subouts) mod d)))

(compute-setupS

t in (cdr submods) (cdr subins) (cdr subouts) mod d)))

o))

((ord-lessp (lex (list d (count submods) (count in))))))

(defn compute-setups (ins mod d)

(compute-setupS

81

'list ins (submodules mod) (subinputs mod) (suboutputs mod) mod d))

(de2n collect-setups (mod d)

(compute-setups (inputs mod) mod d))

(dofn subtract-min-dolays (delays 1)

(Iz (llmtp I) ---
(cone (difference (car 1) (min-delay (car delays)))

(subtract-min-delays (cdr delays) (cdr 1)))

()))

(defn compute-holdS (flag in submods subins subouts mod d) : _

;The period for which iN must remains_abie following a _rigger_ng

;edge in order not to violate the hold time' of any input to a sequential

;|ubmodule is given by

;(COMPUTe-HOLDS

; T IN (SUBMODULES MOD) (SUBI_PUTS MOD) (SUBOUTPUTS HOD) HOD D))

(if (equal flag 'list)

(if (listp in)

(cone (compute-holdS

t (car in) submods subins subouts mod d)

(compute-holdS

_list (cdr in) submods subins subouts mod d))

())

(if (lisZp submods)

(if (sequentialp (car submods))

(fmax (fmaxl (lookup-all in (car subins)

(holds (car submods))))

(compute-holdS

t in (cdr submods) (cdr subins) (cdr subouts) mod d))

(if (member in (car subins))

(if (zerop d)

(fmax (fmaxl (subtracz-min-delays

(delays (car submods))

(compute-holdS 'list

(car subouts)

(submodules mod)

(subinputs mod)

(suboutputs mod)
mod

(,ubl d))))

(compute-holdS t in (cdr submods) (cdr subins)

(cdr subouts) mod d))) _ -

82

v

)

(compute-holdS

t in (cdr submods) (cdr subins) (cdr subouts) mod d)))

o11

((ord-leesp (lex (list d (count submods) (count in))))))

(dofn compute-holds (ins mod d)

(compute-holdS

'lie_ ins (submodules mod) (subinputs mod) (suboutputs mod) mod d))

(dofn collect-holds (mod d)

(compute-holds (inputs mod) mod d))

;;Eeduction of a sequential structure requires that (1) the structure is

;;fla_0 (21 there are no cycles passing only through combinational

;;components, (3) global outputs are functions of state (and not of

;;global inputs), (4) all sequential submodules have the same trigger

;;and are connected to the same clock, and (5) the minimum delays of the

;;outputs of the sequential components are long enough to respect the

;;hold times of the sequential inputs _ha_ they feed:

(defn

(if

t)

check-holds (holds delays)

(lietp holds)

(and (leq (car holds) (min-delay (car delays)))

(check-holds (cdr holds) (cdr delays)))

)

check-internal (mod submods subins subouts clk trigger d)

(listp submods)
(and (if (sequentialp (car submods))

(and (equal (trigger (car submods)) trigger)

(equal (caar subins) elk)

(check-holds (compute-holds (car subouts) mod d)

(delays (car submods))))

(combinationalp (car submods)))

(check-internal

mod (cdr submods) (cdr subins) (cdr subouts) clk triter d))

t))

(defn check-outputs$ (flag out mod d)

;Global outputs are required to be functions of state

(if (equal flag 'list)

(if (listp out)

(and (check-outputs$ t (car out) mod d)

(check-outputs$ Jlist (cdr out) mod d))

83

C))
(if (member out (inputs mod))

f

(if (sequontialp (find-submodule out mod))

t

(if (zerop d)

f

(check-outputs$ 'list (find-inputs out mod) mod (subl d))))))

((ord-lessp (lex (list d (count out))))))

(defn check-seq-struct

(and (check-outputs$

(check-internal

(mod _rigger d)

'list (outputs mod) mod d)

mod

(submodules mod)

(subinputs mod)

(suboutpu_s mod)

(car (inputs mod))

trigger

d)))

;;The minimum clock period is bounded by the maximum of the periods of

;;%he sequential components. It also must be long enough to allow

;;internal signals to stabilize in order to respect setup times:

(defn minimum-periodS (submods subouts mod d)

(if (listp submods)

(if (sequentialp (car submods))

(max (max (period (car submods))

(fmaxl (add-max-delays

(delays (car submods))

(compute-setups (car subouts) mod d))))

(minimum-periodS (cdr submods) (cdr subouts) mod d))

(minlmum-periodS (cdr submods) (cdr subouts) mod d))

()))

(deln mlnimum-period (mod d)

(minimum-periodS (submodules mod) (suboutputs mod) mod d))

;;State forms are constructed in the same manner as output forms, by

;;tracing back to locals and global inputs:

(defn collect-all-states (subins submods mod d)

84

(if (listp 8ubmods)

(if (seq_entialp (car submods))

(append (subst$ 'list

(signal-forms (car subins) mod d)

(inputs (car submods))

(state (car submods)))

(collect-all-states (cdr subins) (cdr submods) mod d))

(collect-all-states (cdr subins) (cUr submods) mod d))
()))

(dofn collect-state (mod d)

(collect-all-states (subinputs mod) (submodules mod) mod d))

;;The locals of the reduced modules are just the union of the locals o_

;;all sequential components:

(defn collect-all-locals (submods)

(i_ (llstp submods)

(if (soquentialp (car submods))

(append (locals (car submods)) t

(collect-all-locals (cdr submods)))

(collect-all-locals (cdr submods)))

()))

(defn collscz-locals (mod)

(collect-all-locals (submodules mod)))

w

;;Before a sequential structure is reduced, its locale and signals are
;;renaned and its admissibility is established:

(defn reduce-renamed-struct (mod trigger d)

(list 'sequential

(inputs mod)

(collect-outputs mod d)

(collect-modes mod)

(collect-delays mod d)

trigger

(collect-locals mod)

(collect-state mod d)

(minimum-period mod d)

(collect-setups mod d)

(collect-holds mod d)))

85

(defn eeq-reduce (mod trigger)

(let ((d (adepth mod)))

(if (and d (check-seq-struct mod trigger d))

(roduce-renamed-strucr (rename-structure sod) trigger d)

f)))

;;A structure is reduced after searching for sequential components:

(defn determine-type-of-reduction (mod submods)

(if (listp submods)

(case (type (car submods))

(combinational (determine-type-of-reduction mod (cdr submods)))

(sequential (seq-reduce mod (trigger (car submods))))

(otherwise _)

(comb-reduce mod)))

(defn reduce-structure (mod)

(de, ermine-type-of-reduction mod (submodules mod)))

(defn reduce-moduleS (flag mod)

(if (equal flag 'list)

(if (listp mod)

(cons (reduce-moduleS t (car mod))

(reduce-moduleS 'list (cdr mod)))

())
(if (etructuralp mod)

(reduce-structure (list 'structural

(inputs mod)

(outputs mod)

mod)))

(reduce-moduleS 'list (submodulee mod))

(subinputs mod)

(suboutputs mod)))

(defn reduce-module (mod)

(reduce-moduleS t mod))

86

Form Approved

REPORT DOCUMENTATION PAGE O_B_o 070_o,_

. . i. _ ' h _,," _r fe._nse tnclud na the t me for reviewing instructions _Brcl_,ng e_ sting clara sour<es
tlm burden for this ¢OI ect off Or mlormat_on ts i_[imltc-lJ _u av'¢.=v¢ * _" _* _ ' m • "

PuINic reOO g - _ ._r--=-I^n Send commefl|s r*=nardinn this burdelq estimate Ot any other &_pect of th*_
I/% JrCl mt flttti%_* the d&ti fl_e¢l ilno completln_ 81no reveew*ng _ne LU._liv. _, ---v -.-- _ - 7

gatherecK O_ o. In uCj " t-rmatlon,_fldudinn, su_es[ions_. _or redu£inq th, =. burden, to Washington Headquarters ¢.erwce$. Diredorate TOt InformattonOberatlOnS anti Re .l:_'tt. J2 _¢_ Jeffer=.Gn

°alv Hiohwlv Suite 1204 Ar ngtort V_ 22202_4]02 and to the Offi(e of Man|KJemen! and Budget. Paperwork ReductIOr_ Prc lect (0104-Olsul. Watnmgton, ut ='u)u:l.

1: AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Contractor RePort
,. . rm

4. TITLE AND SLiBTITLE 5. FUNDING NUMBERS

A Formal Language for the Specification and Verification NASI-18878

of Synchronous and Asynchronous Circuits

-6. AUTHOR(S)

David M. Russinoff

"_. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computational Logic, Inc.
1717 W. Sixth St. Suite 290

Austin, TX 78703-4776

"_. SPONSORING/MONITORiNG AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space _dminlstration

Langley Research Center
Hampton, VA 23681-O001

,,,, i

_. SU-I_PLEMENTARV NOTES

Langley Technical Monitor: Ricky W. Butler
Final Report - Task 4

12a. DISTRIBUTION / AVAILABiLiTY STATEMENT

Unclassified - Unlimited

Subject Catagory 61

WU 505-64-i0-13

8. PERFORMING ORGANIZATION
REPORT NUMBER

1'(). SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-191509

112b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200words)

We describe a formal hardware description language for the intended application

of verifiable asynchronous communication. The language is developed within the

logical framework of the Nqthm syste_ of Boyer and Moore and is based on the
event-driven behavioral model of VHDL, including the basic VHDL signal propagation

mechanisms, the notion of simulation deltas, and the VHDL simulation cycle. A
core subset of the language corresponds closely with a subset of VHDL and is

adequate for the realistic gate-level modeling of both combinational and
sequential circuits. Various extensions to this subset provide means for convenient

expression of behavioral circuit specifications.

,, m

14. SUBJECT TERMS

Formal methods, Verification, VHDL, asynchrony

17. SECURITY CLASSIFICATION
OF REPORT

Uncl n-sified
NSN 7540-01-280-5500

18. SECUR'rI'Y CLASSIFICATION
OF THIS PAGE

Unclassified

" 15. NUMBER OF PAGES

87
16. PRICE CODE

A05
19. SECURITY CLASSIFICATI()N 20. LIMITATION OF ABSTRACT

OF ABSTRACT

_'P:nd,_rd I:orm 298 (Rev 2-89)

prL,,_ribed by ANSI %|d ZJIg-tB

2981102

